RAG implementation, content moderation, prompt classification, new LLM chain, document storage

This commit is contained in:
2025-05-14 03:27:38 -05:00
parent 57695353d0
commit f5d29166a6
32 changed files with 2628 additions and 359 deletions

3
.gitignore vendored
View File

@@ -167,4 +167,5 @@ cython_debug/
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
chroma_db/
documents/

View File

@@ -1,5 +1,16 @@
from django.contrib import admin
from .models import CustomUser, Announcement, Company, LLMModels, Conversation, Prompt, Feedback, PromptMetric
from .models import (
CustomUser,
Announcement,
Company,
LLMModels,
Conversation,
Prompt,
Feedback,
PromptMetric,
DocumentWorkspace,
Document
)
# Register your models here.
@@ -27,16 +38,16 @@ class CustomUserAdmin(admin.ModelAdmin):
"has_signed_tos",
"last_login",
"slug",
"get_set_password_url"
"get_set_password_url",
)
search_fields = ("fields", "username", "first_name", "last_name", "slug")
class FeedbackAdmin(admin.ModelAdmin):
model = Feedback
search_fields = ("status", "text", "get_user_email")
list_display= (
"status", "get_user_email", "title", "category"
)
list_display = ("status", "get_user_email", "title", "category")
class LLMModelsAdmin(admin.ModelAdmin):
model = LLMModels
@@ -46,7 +57,7 @@ class LLMModelsAdmin(admin.ModelAdmin):
class ConversationAdmin(admin.ModelAdmin):
model = Conversation
list_display = ("title", "get_user_email","deleted")
list_display = ("title", "get_user_email", "deleted")
search_fields = ("title",)
@@ -55,9 +66,35 @@ class PromptAdmin(admin.ModelAdmin):
list_display = ("message", "user_created", "get_conversation_title")
search_fields = ("message",)
class PromptMetricAdmin(admin.ModelAdmin):
model = PromptMetric
list_display = ("event", "model_name", "prompt_length","reponse_length",'has_file','file_type', "get_duration")
list_display = (
"event",
"model_name",
"prompt_length",
"reponse_length",
"has_file",
"file_type",
"get_duration",
)
class DocumentWorkspaceAdmin(admin.ModelAdmin):
model = DocumentWorkspace
list_display = (
"name",
"company",
)
class DocumentAdmin(admin.ModelAdmin):
model = Document
list_display = (
"file",
"active",
"created",
"processed",
)
admin.site.register(Announcement, AnnouncmentAdmin)
@@ -69,3 +106,6 @@ admin.site.register(Conversation, ConversationAdmin)
admin.site.register(Prompt, PromptAdmin)
admin.site.register(PromptMetric, PromptMetricAdmin)
admin.site.register(Feedback, FeedbackAdmin)
admin.site.register(DocumentWorkspace, DocumentWorkspaceAdmin)
admin.site.register(Document, DocumentAdmin)

View File

@@ -1,6 +1,31 @@
from django.apps import AppConfig
from django.conf import settings
from django.db import OperationalError
class ChatBackendConfig(AppConfig):
default_auto_field = "django.db.models.BigAutoField"
name = "chat_backend"
def ready(self):
import chat_backend.signals
FORCE_RELOAD = False
if True: #not settings.TESTING: # Don't run during tests
try:
from .services.rag_services import AsyncRAGService
from chat_backend.models import Document
# Check if Chroma needs initialization
if Document.objects.exists():
rag_service = AsyncRAGService()
if rag_service.vector_store._collection.count() == 0:
print("Initializing ChromaDB with existing documents...")
rag_service.ingest_documents()
if FORCE_RELOAD:
print("Force Reload ChromaDB with existing documents...")
rag_service.clear_vector_store()
except OperationalError:
# Database tables might not exist yet during migration
pass

View File

@@ -1,30 +1,32 @@
"""
llama client - Abstract this in the future
"""
import ollama
from typing import List, Dict
class LlamaClient(object):
def __init__(self, model: str='llama3'):
def __init__(self, model: str = "llama3"):
self.client = ollama.Client(host="http://127.0.0.1:11434")
self.model = model
def check_if_model_exists(self) -> bool:
raise NotImplementedError
def generate_conversation_title(self, message:str):
response = self.generate_single_message("Summarise the phrase in one to for words\"%s\"" % message)
raw_response = response['response'].replace("\"","")
def generate_conversation_title(self, message: str):
response = self.generate_single_message(
'Summarise the phrase in one to for words"%s"' % message
)
raw_response = response["response"].replace('"', "")
return " ".join(raw_response.split()[:4])
def generate_single_message(self, message: str):
return ollama.generate(model=self.model, prompt=message)
def get_chat_response(self, messages: List[str]):
return self.client.chat(model = self.model, messages=messages, stream=False)
return self.client.chat(model=self.model, messages=messages, stream=False)
def get_streamed_chat_response(self, messages: List[str]):
return self.client.chat(model = self.model, messages=messages, stream=True)
return self.client.chat(model=self.model, messages=messages, stream=True)

View File

@@ -0,0 +1,78 @@
# Generated by Django 5.1.7 on 2025-04-30 18:58
import django.db.models.deletion
import django.utils.timezone
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
("chat_backend", "0019_customuser_conversation_order_and_more"),
]
operations = [
migrations.CreateModel(
name="DocumentWorkspace",
fields=[
(
"id",
models.BigAutoField(
auto_created=True,
primary_key=True,
serialize=False,
verbose_name="ID",
),
),
("created", models.DateTimeField(default=django.utils.timezone.now)),
(
"last_modified",
models.DateTimeField(default=django.utils.timezone.now),
),
("name", models.CharField(max_length=255)),
(
"company",
models.ForeignKey(
on_delete=django.db.models.deletion.CASCADE,
to="chat_backend.company",
),
),
],
options={
"abstract": False,
},
),
migrations.CreateModel(
name="Document",
fields=[
(
"id",
models.BigAutoField(
auto_created=True,
primary_key=True,
serialize=False,
verbose_name="ID",
),
),
("created", models.DateTimeField(default=django.utils.timezone.now)),
(
"last_modified",
models.DateTimeField(default=django.utils.timezone.now),
),
("file", models.FileField(upload_to="documents/")),
("uploaded_at", models.DateTimeField(auto_now_add=True)),
("processed", models.BooleanField(default=False)),
("active", models.BooleanField(default=False)),
(
"workspace",
models.ForeignKey(
on_delete=django.db.models.deletion.CASCADE,
to="chat_backend.documentworkspace",
),
),
],
options={
"abstract": False,
},
),
]

View File

@@ -3,9 +3,11 @@ from django.contrib.auth.models import AbstractUser
from django.utils import timezone
from autoslug import AutoSlugField
from django.core.files.storage import FileSystemStorage
# Create your models here.
FILE_STORAGE = FileSystemStorage(location='prompt_files')
FILE_STORAGE = FileSystemStorage(location="prompt_files")
class TimeInfoBase(models.Model):
@@ -60,12 +62,18 @@ class CustomUser(AbstractUser):
help_text="Allows the edit/add/remove of users for a company", default=False
)
deleted = models.BooleanField(help_text="This is to hid accounts", default=False)
has_signed_tos = models.BooleanField(default=False, help_text="If the user has signed the TOS")
slug = AutoSlugField(populate_from='email')
conversation_order = models.BooleanField(default=True, help_text='How the conversations should display')
has_signed_tos = models.BooleanField(
default=False, help_text="If the user has signed the TOS"
)
slug = AutoSlugField(populate_from="email")
conversation_order = models.BooleanField(
default=True, help_text="How the conversations should display"
)
def get_set_password_url(self):
return f"https://www.chat.aimloperations.com/set_password?slug={self.slug}"
FEEDBACK_CHOICE = (
("SUBMITTED", "Submitted"),
("RESOLVED", "Resolved"),
@@ -74,21 +82,26 @@ FEEDBACK_CHOICE = (
)
FEEDBACK_CATEGORIES = (
('NOT_DEFINED', 'Not defined'),
('BUG', 'Bug'),
('ENHANCEMENT', 'Enhancement'),
('OTHER', 'Other'),
('MAX_CATEGORIES', 'Max Categories'),
("NOT_DEFINED", "Not defined"),
("BUG", "Bug"),
("ENHANCEMENT", "Enhancement"),
("OTHER", "Other"),
("MAX_CATEGORIES", "Max Categories"),
)
class Feedback(TimeInfoBase):
title = models.TextField(max_length=64, default='')
title = models.TextField(max_length=64, default="")
user = models.ForeignKey(
CustomUser, on_delete=models.CASCADE, blank=True, null=True
)
text = models.TextField(max_length=512)
status = models.CharField(max_length=24, choices=FEEDBACK_CHOICE, default="SUBMITTED")
category = models.CharField(max_length=24, choices=FEEDBACK_CATEGORIES, default="NOT_DEFINED")
status = models.CharField(
max_length=24, choices=FEEDBACK_CHOICE, default="SUBMITTED"
)
category = models.CharField(
max_length=24, choices=FEEDBACK_CATEGORIES, default="NOT_DEFINED"
)
def get_user_email(self):
if self.user:
@@ -105,9 +118,8 @@ MONTH_CHOICES = (
("DECEMBER", "December"),
)
month = models.CharField(max_length=9,
choices=MONTH_CHOICES,
default="JANUARY")
month = models.CharField(max_length=9, choices=MONTH_CHOICES, default="JANUARY")
class Announcement(TimeInfoBase):
class Status(models.TextChoices):
@@ -131,7 +143,9 @@ class Conversation(TimeInfoBase):
title = models.CharField(
max_length=64, help_text="The title for the conversation", default=""
)
deleted = models.BooleanField(help_text="This is to hide conversations", default=False)
deleted = models.BooleanField(
help_text="This is to hide conversations", default=False
)
def get_user_email(self):
if self.user:
@@ -151,20 +165,26 @@ class Prompt(TimeInfoBase):
conversation = models.ForeignKey(
"Conversation", on_delete=models.CASCADE, blank=True, null=True
)
file =models.FileField(upload_to=FILE_STORAGE, blank=True, null=True, help_text="file for the prompt")
file_type=models.CharField(max_length=16, blank=True, null=True, help_text='file type of the file for the prompt')
file = models.FileField(
upload_to=FILE_STORAGE, blank=True, null=True, help_text="file for the prompt"
)
file_type = models.CharField(
max_length=16,
blank=True,
null=True,
help_text="file type of the file for the prompt",
)
def get_conversation_title(self):
if self.conversation:
return self.conversation.title
else:
return ""
def file_exists(self):
return self.file != None and self.file.storage.exists(self.file.name)
class PromptMetric(TimeInfoBase):
PROMPT_METRIC_CHOICES = (
("CREATED", "Created"),
@@ -174,20 +194,40 @@ class PromptMetric(TimeInfoBase):
("MAX_PROMPT_METRIC_CHOICES", "Max Prompt Metric Choices"),
)
prompt_id = models.IntegerField(help_text="The id of the prompt this matches to")
conversation_id = models.IntegerField(help_text="The id of the conversation this matches to")
conversation_id = models.IntegerField(
help_text="The id of the conversation this matches to"
)
event = models.CharField(
max_length=26, choices=PROMPT_METRIC_CHOICES, default='CREATED'
max_length=26, choices=PROMPT_METRIC_CHOICES, default="CREATED"
)
model_name = models.CharField(max_length=215, help_text="The name of the model")
start_time = models.DateTimeField()
end_time = models.DateTimeField(blank=True, null=True)
prompt_length = models.IntegerField( help_text="How many characters are in the prompt")
reponse_length = models.IntegerField(blank=True, null=True, help_text="How many characters are in the response")
prompt_length = models.IntegerField(
help_text="How many characters are in the prompt"
)
reponse_length = models.IntegerField(
blank=True, null=True, help_text="How many characters are in the response"
)
has_file = models.BooleanField(help_text="Is there a file")
file_type = models.CharField(max_length=16, help_text='The file type, if any', blank=True, null=True)
file_type = models.CharField(
max_length=16, help_text="The file type, if any", blank=True, null=True
)
def get_duration(self):
if(self.start_time and self.end_time):
difference =self.end_time - self.start_time
if self.start_time and self.end_time:
difference = self.end_time - self.start_time
return difference.seconds
return 0
# Document Models
class DocumentWorkspace(TimeInfoBase):
name = models.CharField(max_length=255)
company = models.ForeignKey(Company, on_delete=models.CASCADE)
class Document(TimeInfoBase):
workspace = models.ForeignKey(DocumentWorkspace, on_delete=models.CASCADE)
file = models.FileField(upload_to='documents/')
uploaded_at = models.DateTimeField(auto_now_add=True)
processed = models.BooleanField(default=False)
active = models.BooleanField(default=False)

View File

@@ -1,8 +1,9 @@
from rest_framework.renderers import BaseRenderer
class ServerSentEventRenderer(BaseRenderer):
media_type = 'text/event-stream'
format = 'txt'
media_type = "text/event-stream"
format = "txt"
def render(self, data, accepted_media_type=None, renderer_context=None):
return data
return data

View File

@@ -1,7 +1,6 @@
from django.urls import re_path
from django.urls import re_path
from .views import ChatConsumerAgain
websocket_urlpatterns = [
re_path(r'ws/chat_again/$', ChatConsumerAgain.as_asgi()),
]
websocket_urlpatterns = [
re_path(r"ws/chat_again/$", ChatConsumerAgain.as_asgi()),
]

View File

@@ -1,6 +1,16 @@
from rest_framework_simplejwt.serializers import TokenObtainPairSerializer
from rest_framework import serializers
from .models import CustomUser, Announcement, Company, Conversation, Prompt, Feedback, FEEDBACK_CATEGORIES
from .models import (
CustomUser,
Announcement,
Company,
Conversation,
Prompt,
Feedback,
FEEDBACK_CATEGORIES,
DocumentWorkspace,
Document
)
class MyTokenObtainPairSerializer(TokenObtainPairSerializer):
@@ -25,11 +35,13 @@ class AnnouncmentSerializer(serializers.ModelSerializer):
model = Announcement
fields = "__all__"
class FeedbackSerializer(serializers.ModelSerializer):
class Meta:
model = Feedback
fields = "__all__"
class CustomUserSerializer(serializers.ModelSerializer):
email = serializers.EmailField(required=True)
username = serializers.CharField()
@@ -58,12 +70,40 @@ class ConversationSerializer(serializers.ModelSerializer):
class PromptSerializer(serializers.ModelSerializer):
class Meta:
model = Prompt
fields = ("message", "user_created", "created", "id", )
fields = (
"message",
"user_created",
"created",
"id",
)
class BasicUserSerializer(serializers.ModelSerializer):
class Meta:
model = CustomUser
fields = ("email", "first_name", "last_name", "is_active","has_usable_password","is_company_manager",'has_signed_tos')
fields = (
"email",
"first_name",
"last_name",
"is_active",
"has_usable_password",
"is_company_manager",
"has_signed_tos",
)
# document serializers
class DocumentWorkspaceSerializer(serializers.ModelSerializer):
class Meta:
model = DocumentWorkspace
fields = ['id', 'name', 'created']
read_only_fields = ['id', 'created']
class DocumentSerializer(serializers.ModelSerializer):
class Meta:
model = Document
fields = ['id', 'workspace', 'file', 'uploaded_at', 'processed', 'created', 'active']
read_only_fields = ['id', 'uploaded_at', 'processed', 'created']

View File

View File

@@ -0,0 +1,145 @@
import os
import logging
from typing import Optional, Tuple
from PIL import Image
import torch
from diffusers import StableDiffusionPipeline, DPMSolverSinglestepScheduler
logger = logging.getLogger(__name__)
class ImageGenerationService:
"""
Service for text-to-image generation using Stable Diffusion.
Uses singleton pattern to maintain loaded model in memory.
"""
_instance = None
_model_loaded = False
def __new__(cls):
if cls._instance is None:
cls._instance = super().__new__(cls)
cls._instance._initialize()
return cls._instance
def _initialize(self):
"""Initialize the service with default settings"""
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model_id = "stabilityai/stable-diffusion-2-1"
self.pipeline = None
self.default_params = {
"num_inference_steps": 25,
"guidance_scale": 7.5,
"width": 512,
"height": 512,
}
def load_model(self):
"""Load the Stable Diffusion model"""
if self._model_loaded:
return
try:
logger.info(f"Loading Stable Diffusion model on {self.device}...")
# Use DPMSolver for faster inference
self.pipeline = StableDiffusionPipeline.from_pretrained(
self.model_id,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
)
self.pipeline.scheduler = DPMSolverSinglestepScheduler.from_config(
self.pipeline.scheduler.config
)
self.pipeline = self.pipeline.to(self.device)
# Optimizations
if self.device == "cuda":
self.pipeline.enable_attention_slicing()
self.pipeline.enable_xformers_memory_efficient_attention()
self._model_loaded = True
logger.info("Model loaded successfully")
except Exception as e:
logger.error(f"Failed to load model: {str(e)}")
raise RuntimeError(f"Model loading failed: {str(e)}")
def generate_image(
self,
prompt: str,
negative_prompt: Optional[str] = None,
output_path: Optional[str] = None,
**kwargs
) -> Tuple[Image.Image, dict]:
"""
Generate image from text prompt.
Args:
prompt: Text prompt for image generation
negative_prompt: Text for things to avoid in generation
output_path: Optional path to save the image
**kwargs: Generation parameters (overrides defaults)
Returns:
Tuple of (PIL.Image, generation_parameters)
"""
if not self._model_loaded:
self.load_model()
# Merge default params with overrides
params = {**self.default_params, **kwargs}
try:
logger.info(f"Generating image with prompt: {prompt[:50]}...")
with torch.inference_mode():
result = self.pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
**params
)
image = result.images[0]
if output_path:
os.makedirs(os.path.dirname(output_path), exist_ok=True)
image.save(output_path)
logger.info(f"Image saved to {output_path}")
return image, params
except Exception as e:
logger.error(f"Image generation failed: {str(e)}")
raise RuntimeError(f"Image generation failed: {str(e)}")
class AsyncImageGenerationService:
"""
Asynchronous wrapper for image generation service.
Runs the synchronous service in a thread pool.
"""
def __init__(self):
self.sync_service = ImageGenerationService()
async def generate_image(
self,
prompt: str,
negative_prompt: Optional[str] = None,
output_path: Optional[str] = None,
**kwargs
) -> Tuple[Image.Image, dict]:
"""Async version of generate_image"""
import asyncio
from functools import partial
loop = asyncio.get_event_loop()
func = partial(
self.sync_service.generate_image,
prompt=prompt,
negative_prompt=negative_prompt,
output_path=output_path,
**kwargs
)
return await loop.run_in_executor(None, func)

View File

@@ -0,0 +1,138 @@
from abc import ABC, abstractmethod
from typing import AsyncGenerator, Generator, Optional
from langchain_community.llms import Ollama
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from chat_backend.models import Conversation, Prompt
class LLMService(ABC):
"""Abstract base class for LLM conversation services."""
def __init__(self):
self.llm = Ollama(
model="llama3.2",
temperature=0.7,
top_k=50,
top_p=0.9,
repeat_penalty=1.1,
num_ctx=4096
)
self.output_parser = StrOutputParser()
@abstractmethod
def generate_response(self, conversation: Conversation, query: str, **kwargs):
"""Generate a response to a query within a conversation context."""
pass
def _format_history(self, conversation: Conversation) -> str:
"""Format conversation history for the prompt."""
prompts = Prompt.objects.filter(conversation=conversation).order_by('created_at')
return "\n".join(
f"{'User' if prompt.is_user else 'AI'}: {prompt.text}"
for prompt in prompts
)
class SyncLLMService(LLMService):
"""Synchronous LLM conversation service."""
def __init__(self):
super().__init__()
self._setup_chain()
def _setup_chain(self):
"""Setup the conversation chain."""
template = """Continue the conversation based on the following history:
{history}
Latest message: {query}
Response:"""
self.prompt = ChatPromptTemplate.from_template(template)
self.conversation_chain = (
{
"history": lambda x: self._format_history(x["conversation"]),
"query": lambda x: x["query"]
}
| self.prompt
| self.llm
| self.output_parser
)
def generate_response(self, conversation: Conversation, query: str, **kwargs) -> Generator[str, None, None]:
"""Generate response with streaming support."""
chain_input = {
"query": query,
"conversation": conversation
}
for chunk in self.conversation_chain.stream(chain_input):
yield chunk
class AsyncLLMService(LLMService):
"""Asynchronous LLM conversation service."""
def __init__(self):
super().__init__()
self._setup_chain()
def _setup_chain(self):
"""Setup the conversation chain."""
template = """Continue this conversation while maintaining context by providing a single helpful response.
Current context: {context}
Last 3 messages:
{recent_history}
Latest message: {query}
Instructions:
- Carefully maintain all established context
- If referencing previous elements (like stories), preserve all details
- When asked to modify something, identify what's being modified
Response:"""
self.prompt = ChatPromptTemplate.from_template(template)
self.conversation_chain = (
{
"context": lambda x: self._format_history(x["conversation"]),
"recent_history": lambda x: self._get_recent_messages(x["conversation"]),
"query": lambda x: x["query"]
}
| self.prompt
| self.llm
| self.output_parser
)
async def _format_history(self, conversation: Conversation) -> str:
"""Async version of format conversation history."""
prompts = await Prompt.objects.filter(conversation=conversation).order_by('created_at').alist()
return "\n".join(
f"{'User' if prompt.is_user else 'AI'}: {prompt.text}"
for prompt in prompts
)
async def _get_recent_messages(self, conversation: Conversation) -> str:
"""Async version of format conversation history."""
prompts = await Prompt.objects.filter(conversation=conversation).order_by('created_at').alist()[-3:]
return "\n".join(
f"{'User' if prompt.is_user else 'AI'}: {prompt.text}"
for prompt in prompts
)
async def generate_response(self, conversation: Conversation, query: str, **kwargs) -> AsyncGenerator[str, None]:
"""Generate response with async streaming support."""
chain_input = {
"query": query,
"conversation": conversation
}
async for chunk in self.conversation_chain.astream(chain_input):
yield chunk

View File

@@ -0,0 +1,79 @@
from enum import Enum, auto
from typing import Dict, Any
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.llms import Ollama
class ModerationLabel(Enum):
NSFW = auto()
FINE = auto()
class ModerationClassifier:
"""
Classifies prompts as NSFW or FINE (safe) content.
"""
def __init__(self):
self.llm = Ollama(
model="llama3.2",
temperature=0.1, # Very low for strict moderation
top_k=10,
num_ctx=2048
)
self.moderation_prompt = ChatPromptTemplate.from_messages([
("system", """You are a strict content moderator. Classify the following prompt as either NSFW or FINE.
NSFW includes:
- Sexual content
- Violence/gore
- Hate speech
- Illegal activities
- Harassment
- Graphic/disturbing content
FINE includes:
- Safe for work topics
- General conversation
- Professional inquiries
- Creative requests (non-explicit)
- Technical questions
Examples:
- "How to make a bomb" → NSFW
- "Write a love poem" → FINE
- "Explicit sex scene" → NSFW
- "Python tutorial" → FINE
Return ONLY "NSFW" or "FINE", nothing else."""),
("human", "{prompt}")
])
self.chain = self.moderation_prompt | self.llm
async def classify_async(self, prompt: str) -> ModerationLabel:
"""Asynchronous classification"""
try:
response = (await self.chain.ainvoke({"prompt": prompt})).strip().upper()
return self._parse_response(response)
except Exception as e:
print(f"Moderation error: {e}")
return ModerationLabel.NSFW # Fail-safe to NSFW
def classify(self, prompt: str) -> ModerationLabel:
"""Synchronous classification"""
try:
response = self.chain.invoke({"prompt": prompt}).strip().upper()
return self._parse_response(response)
except Exception as e:
print(f"Moderation error: {e}")
return ModerationLabel.NSFW # Fail-safe to NSFW
def _parse_response(self, response: str) -> ModerationLabel:
"""Convert string response to ModerationLabel enum"""
if "NSFW" in response:
return ModerationLabel.NSFW
return ModerationLabel.FINE # Default to FINE if unclear
# Singleton instance
moderation_classifier = ModerationClassifier()

View File

@@ -0,0 +1,100 @@
from enum import Enum, auto
from typing import Dict, Any
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.llms import Ollama
class PromptType(Enum):
GENERAL_CHAT = auto()
RAG = auto()
IMAGE_GENERATION = auto()
UNKNOWN = auto()
class PromptClassifier:
"""
Classifies user prompts to determine which service should handle them.
"""
def __init__(self):
self.llm = Ollama(
model="llama3",
temperature=0.3, # Lower temp for more deterministic classification
top_k=20,
top_p=0.9,
num_ctx=4096
)
self.classification_prompt = ChatPromptTemplate.from_messages([
("system",
"""You are a precision prompt classifier. Strictly categorize prompts into:
1. GENERAL_CHAT - Casual conversation, personal questions, or non-specific inquiries
2. RAG - ONLY when explicitly requesting document/search-based knowledge
3. IMAGE_GENERATION - Specific requests to create/modify images
4. UNKNOWN - If none of the above fit
1. IMAGE_GENERATION - ONLY if:
- Explicitly contains: "generate/create/draw/make an image/picture/photo/art/illustration"
- Requests visual content creation
- Example: "Make a picture of a castle" → IMAGE_GENERATION
2. RAG - ONLY if:
- Explicitly mentions documents/files/data
- Uses search terms: "find/search/lookup in [source]"
- Example: "What does contracts.pdf say?" → RAG
3. GENERAL_CHAT - DEFAULT category when:
- Doesn't meet above criteria
- Conversational/general knowledge
- Uncertain cases
- Example: "Tell me a joke" → GENERAL_CHAT
Examples:
[Definitely RAG]
- "What does the uploaded PDF say about quarterly results?"
- "Search our documents for the 2023 marketing strategy"
- "Find the contract clause about termination"
[Definitely GENERAL_CHAT]
- "How does photosynthesis work?" (General knowledge)
- "Tell me a joke"
- "What's your opinion on AI?"
[Borderline → GENERAL_CHAT]
- "What's our company policy on X?" (No doc reference → general)
- "Explain quantum computing" (General knowledge)
- "Summarize the meeting" (No doc reference)
Return ONLY the label, no explanations."""),
("human", "{prompt}")
])
self.chain = self.classification_prompt | self.llm
async def classify_async(self, prompt: str) -> PromptType:
"""Asynchronously classify the prompt"""
try:
response = await self.chain.ainvoke({"prompt": prompt})
return self._parse_response(response.strip())
except Exception as e:
print(f"Classification error: {e}")
return PromptType.UNKNOWN
def classify(self, prompt: str) -> PromptType:
"""Synchronously classify the prompt"""
try:
response = self.chain.invoke({"prompt": prompt})
return self._parse_response(response.strip())
except Exception as e:
print(f"Classification error: {e}")
return PromptType.UNKNOWN
def _parse_response(self, response: str) -> PromptType:
"""Convert string response to PromptType enum"""
response = response.upper()
for prompt_type in PromptType:
if prompt_type.name in response:
return prompt_type
return PromptType.UNKNOWN
# Singleton instance for easy access
prompt_classifier = PromptClassifier()

View File

@@ -0,0 +1,378 @@
import os
from abc import ABC, abstractmethod
from typing import List, Dict, Any, AsyncGenerator, Generator, Optional
from channels.db import database_sync_to_async
from langchain_community.embeddings import OllamaEmbeddings
from langchain_community.llms import Ollama
from langchain_community.vectorstores import Chroma
from langchain_core.documents import Document as LangDocument
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import (
PyPDFLoader,
Docx2txtLoader,
TextLoader,
UnstructuredFileLoader
)
from django.core.files.uploadedfile import UploadedFile
from chat_backend.models import Conversation, Prompt, DocumentWorkspace, Document
from pathlib import Path
@database_sync_to_async
def get_documents(workspace: DocumentWorkspace | None = None):
if workspace:
return [doc for doc in Document.objects.filter(workspace=workspace)]
else:
return [doc for doc in Document.objects.all()]
class RAGService(ABC):
"""Abstract base class for RAG services."""
_instance = None
def __new__(cls):
if cls._instance is None:
cls._instance = super().__new__(cls)
cls._instance.__init__()
return cls._instance
def __init__(self):
self.embedding_model = OllamaEmbeddings(model="llama3.2")
self.llm = Ollama(
model="llama3.2",
temperature=0.7,
top_k=50,
top_p=0.9,
repeat_penalty=1.1,
num_ctx=4096
)
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200
)
self.vector_store = self._initialize_vector_store()
# Supported file types and their loaders
self.loader_mapping = {
'.pdf': PyPDFLoader,
'.docx': Docx2txtLoader,
'.txt': TextLoader,
# Fallback for other file types
'*': UnstructuredFileLoader,
}
def _initialize_vector_store(self) -> Chroma:
"""Initialize and return the Chroma vector store."""
persist_directory=f"./chroma_db/"
vector_store = Chroma(
embedding_function=self.embedding_model,
persist_directory=persist_directory
)
return vector_store
def clear_vector_store(self):
"""Clear all vectors from the store"""
self.vector_store.delete_collection()
self.vector_store = self._initialize_vector_store()
def _prepare_documents(self, documents: List[Document]) -> List[Document]:
"""Process documents for ingestion into vector store."""
docs = []
for doc in documents:
print(f"Processing: {doc.file.name}")
loader_class = self._get_file_loader( doc.file.name)
loader = loader_class(doc.file)
chunks = self._load_and_split_documents(doc.file.path)
if chunks:
self.vector_store.add_documents(chunks)
self.vector_store.persist()
def ingest_documents(self, workspace: DocumentWorkspace | None = None) -> None:
"""Ingest documents from a workspace into the vector store."""
print(f"Getting the Document via the workspace: {workspace}")
if workspace:
documents = [doc for doc in Document.objects.filter(workspace=workspace)]
else:
documents = [doc for doc in Document.objects.all()]
print(f"Processing the documents : {documents}")
self._prepare_documents(documents)
@abstractmethod
def generate_response(self, conversation: Conversation, query: str, **kwargs):
"""Generate a response using RAG."""
pass
@abstractmethod
def search_documents(self, query: str, workspace: Optional[DocumentWorkspace] = None, k: int = 4) -> List[Document]:
"""Search relevant documents from the vector store."""
pass
def _get_file_loader(self, file_path: str):
"""Get appropriate loader for file type"""
ext = Path(file_path).suffix.lower()
return self.loader_mapping.get(ext, self.loader_mapping['*'])
def _sanitize_filename(self, filename: str) -> str:
"""Sanitize filename for safe storage"""
return re.sub(r'[^\w\-_. ]', '_', filename)
def _save_uploaded_file(self, uploaded_file: UploadedFile, save_dir: str) -> str:
"""Save uploaded file to disk"""
os.makedirs(save_dir, exist_ok=True)
sanitized_name = self._sanitize_filename(uploaded_file.name)
file_path = os.path.join(save_dir, sanitized_name)
with open(file_path, 'wb+') as destination:
for chunk in uploaded_file.chunks():
destination.write(chunk)
return file_path
def _load_and_split_documents(self, file_path: str, metadata: dict = None) -> List[Document]:
"""Load and split documents from file"""
loader_class = self._get_file_loader(file_path)
loader = loader_class(file_path)
docs = loader.load()
if metadata:
for doc in docs:
doc.metadata.update(metadata)
return self.text_splitter.split_documents(docs)
def add_files_to_store(
self,
file_tupls: List[UploadedFile], # (file_path, name,workspace_id)
workspace_id: str,
source: str = "upload",
save_dir: str = "data/uploads"
) -> Dict[str, Any]:
"""
Process and add uploaded files to vector store
Args:
files: List of Django UploadedFile objects
workspace_id: ID of the workspace these belong to
source: Source identifier for documents
save_dir: Directory to save uploaded files
Returns:
Dictionary with processing results
"""
results = {
'total_added': 0,
'failed_files': [],
'processed_files': []
}
for file_tuple in file_tupls:
try:
# Save file to disk
# Prepare metadata
metadata = {
'source': file_tuple[1],
'workspace_id': file_tuple[2],
'original_filename': file_tuple[1],
'file_path': file_tuple[0],
}
# Load and split documents
docs = self._load_and_split_documents(file_path, metadata)
# Add to vector store
if docs:
self.vector_store.add_documents(docs)
results['total_added'] += len(docs)
results['processed_files'].append({
'filename': file_tuple[1],
'document_count': len(docs)
})
except Exception as e:
results['failed_files'].append({
'filename': file_tuple[1],
'error': str(e)
})
continue
# Persist changes
self.vector_store.persist()
return results
class SyncRAGService(RAGService):
"""Synchronous RAG service implementation."""
def __init__(self):
super().__init__()
self._setup_chain()
def _setup_chain(self):
"""Setup the RAG chain."""
template = """Answer the question based only on the following context:
{context}
Conversation history:
{history}
Question: {question}
"""
self.prompt = ChatPromptTemplate.from_template(template)
self.rag_chain = (
{
"context": self._retriever_with_history,
"history": lambda x: self._format_history(x["conversation"]),
"question": lambda x: x["query"]
}
| self.prompt
| self.llm
| StrOutputParser()
)
def _format_history(self, conversation: Conversation) -> str:
"""Format conversation history for the prompt."""
prompts = Prompt.objects.filter(conversation=conversation).order_by('created_at')
return "\n".join(
f"{'User' if prompt.is_user else 'AI'}: {prompt.text}"
for prompt in prompts
)
def _retriever_with_history(self, input_dict: Dict[str, Any]) -> str:
"""Retrieve documents considering conversation history."""
query = input_dict["query"]
conversation = input_dict["conversation"]
# You could enhance this to consider historical context in retrieval
relevant_docs = self.search_documents(query, conversation.workspace)
if not relevant_docs:
print("didn't find any relevant docs")
return relevant_docs
else:
return relevant_docs
def search_documents(self, query: str, workspace: Optional[DocumentWorkspace] = None, k: int = 4) -> List[Document]:
"""Search relevant documents from the vector store."""
filter_dict = {}
if workspace:
filter_dict["workspace_id"] = workspace.id
print(f"search_kwargs: {search_kwargs}")
retriever = self.vector_store.as_retriever(
search_type="similarity",
search_kwargs={
"k": k,
"filter": filter_dict if filter_dict else None
}
)
return retriever.get_relevant_documents(query)
def generate_response(self, conversation: Conversation, query: str, **kwargs) -> Generator[str, None, None]:
"""Generate response with streaming support."""
chain_input = {
"query": query,
"conversation": conversation
}
for chunk in self.rag_chain.stream(chain_input):
yield chunk
class AsyncRAGService(RAGService):
"""Asynchronous RAG service implementation."""
def __init__(self):
super().__init__()
self._setup_chain()
def _setup_chain(self):
"""Setup the RAG chain."""
template = """Answer the question based only on the following context:
{context}
Conversation history:
{history}
Question: {question}
"""
self.prompt = ChatPromptTemplate.from_template(template)
self.rag_chain = (
{
"context": self._retriever_with_history,
"history": lambda x: self._format_history(x["conversation"]),
"question": lambda x: x["query"]
}
| self.prompt
| self.llm
| StrOutputParser()
)
async def _format_history(self, conversation: Conversation) -> str:
"""Format conversation history for the prompt."""
prompts = await Prompt.objects.filter(conversation=conversation).order_by('created_at').alist()
print(f"prompts that we are seeding with are: {prompts}")
return "\n".join(
f"{'User' if prompt.is_user else 'AI'}: {prompt.text}"
for prompt in prompts
)
async def _retriever_with_history(self, input_dict: Dict[str, Any]) -> str:
"""Retrieve documents considering conversation history."""
print(f"Retrieving history with input: {input_dict}")
query = input_dict["query"]
conversation = input_dict["conversation"]
workspace = input_dict["workspace"]
# You could enhance this to consider historical context in retrieval
docs= await self.search_documents(query, workspace)
if not docs:
print("Didn't find any relevant docs")
print("\n\n".join(doc.page_content for doc in docs))
return "\n\n".join(doc.page_content for doc in docs)
async def search_documents(self, query: str, workspace: Optional[DocumentWorkspace] = None, k: int = 4) -> List[Document]:
"""Search relevant documents from the vector store."""
filter_dict = {}
print(f"Do we have a workspace: {workspace}")
if workspace:
filter_dict["workspace_id"] = workspace.id
search_kwargs={
"k": k,
"filter": filter_dict if filter_dict else None
}
print(f"search_kwargs: {search_kwargs}")
retriever = self.vector_store.as_retriever(
search_type="mmr",
search_kwargs={
"k": k,
"filter": filter_dict if filter_dict else None
}
)
return await retriever.aget_relevant_documents(query)
async def generate_response(self, conversation: Conversation, query: str, workspace: DocumentWorkspace, **kwargs) -> AsyncGenerator[str, None]:
"""Generate response with streaming support."""
chain_input = {
"query": query,
"conversation": conversation,
"workspace": workspace,
}
async for chunk in self.rag_chain.astream(chain_input):
yield chunk

View File

@@ -0,0 +1,219 @@
import os
from unittest import TestCase, mock
from unittest.mock import MagicMock, patch, AsyncMock
from typing import List, Dict, Any
from django.test import TestCase as DjangoTestCase
from chat_backend.services.rag_services import RAGService, SyncRAGService, AsyncRAGService
from chat_backend.models import Conversation, Prompt, DocumentWorkspace, Document
class TestRAGService(TestCase):
def setUp(self):
self.rag_service = RAGService()
self.rag_service.vector_store = MagicMock()
self.rag_service.embedding_model = MagicMock()
self.rag_service.text_splitter = MagicMock()
def test_initialize_vector_store(self):
with patch('os.path.exists', return_value=False), \
patch('os.makedirs') as mock_makedirs, \
patch('langchain_community.vectorstores.Chroma') as mock_chroma:
# Reset the vector store to test initialization
self.rag_service.vector_store = None
result = self.rag_service._initialize_vector_store()
mock_makedirs.assert_called_once_with("chroma_db")
mock_chroma.assert_called_once_with(
embedding_function=self.rag_service.embedding_model,
persist_directory="chroma_db"
)
self.assertIsNotNone(result)
def test_prepare_documents(self):
mock_doc1 = MagicMock(spec=Document)
mock_doc1.content = "Test content"
mock_doc1.source = "test_source"
mock_doc1.workspace = MagicMock()
mock_doc1.workspace.id = 1
mock_doc1.id = 1
self.rag_service.text_splitter.split_text.return_value = ["chunk1", "chunk2"]
result = self.rag_service._prepare_documents([mock_doc1])
self.assertEqual(len(result), 2)
self.rag_service.text_splitter.split_text.assert_called_once_with("Test content")
self.assertEqual(result[0].page_content, "chunk1")
self.assertEqual(result[0].metadata["source"], "test_source")
def test_ingest_documents(self):
mock_workspace = MagicMock()
mock_document = MagicMock()
mock_documents = [mock_document]
with patch('services.rag_services.Document.objects.filter', return_value=mock_documents):
self.rag_service._prepare_documents = MagicMock(return_value=["processed_doc"])
self.rag_service.ingest_documents(mock_workspace)
self.rag_service.vector_store.add_documents.assert_called_once_with(["processed_doc"])
self.rag_service.vector_store.persist.assert_called_once()
class TestSyncRAGService(DjangoTestCase):
def setUp(self):
self.sync_service = SyncRAGService()
self.sync_service.vector_store = MagicMock()
self.sync_service.llm = MagicMock()
self.sync_service.rag_chain = MagicMock()
self.mock_conversation = MagicMock(spec=Conversation)
self.mock_conversation.workspace = MagicMock()
self.mock_prompt1 = MagicMock(spec=Prompt)
self.mock_prompt1.is_user = True
self.mock_prompt1.text = "User question"
self.mock_prompt1.created_at = "2023-01-01"
self.mock_prompt2 = MagicMock(spec=Prompt)
self.mock_prompt2.is_user = False
self.mock_prompt2.text = "AI response"
self.mock_prompt2.created_at = "2023-01-02"
def test_format_history(self):
with patch('services.rag_services.Prompt.objects.filter') as mock_filter:
mock_filter.return_value.order_by.return_value = [self.mock_prompt1, self.mock_prompt2]
result = self.sync_service._format_history(self.mock_conversation)
expected = "User: User question\nAI: AI response"
self.assertEqual(result, expected)
mock_filter.assert_called_once_with(conversation=self.mock_conversation)
def test_retriever_with_history(self):
input_dict = {
"query": "test query",
"conversation": self.mock_conversation
}
self.sync_service.search_documents = MagicMock(return_value=["doc1", "doc2"])
result = self.sync_service._retriever_with_history(input_dict)
self.sync_service.search_documents.assert_called_once_with(
"test query",
self.mock_conversation.workspace
)
self.assertEqual(result, ["doc1", "doc2"])
def test_search_documents(self):
mock_retriever = MagicMock()
mock_retriever.get_relevant_documents.return_value = ["doc1", "doc2"]
self.sync_service.vector_store.as_retriever.return_value = mock_retriever
result = self.sync_service.search_documents("test query", self.mock_conversation.workspace)
self.sync_service.vector_store.as_retriever.assert_called_once_with(
search_type="similarity",
search_kwargs={
"k": 4,
"filter": {"workspace_id": self.mock_conversation.workspace.id}
}
)
self.assertEqual(result, ["doc1", "doc2"])
def test_generate_response(self):
chain_input = {
"query": "test query",
"conversation": self.mock_conversation
}
mock_stream = ["chunk1", "chunk2", "chunk3"]
self.sync_service.rag_chain.stream.return_value = mock_stream
result = list(self.sync_service.generate_response(self.mock_conversation, "test query"))
self.sync_service.rag_chain.stream.assert_called_once_with(chain_input)
self.assertEqual(result, mock_stream)
class TestAsyncRAGService(DjangoTestCase):
def setUp(self):
self.async_service = AsyncRAGService()
self.async_service.vector_store = MagicMock()
self.async_service.llm = MagicMock()
self.async_service.rag_chain = AsyncMock()
self.mock_conversation = MagicMock(spec=Conversation)
self.mock_conversation.workspace = MagicMock()
self.mock_prompt1 = MagicMock(spec=Prompt)
self.mock_prompt1.is_user = True
self.mock_prompt1.text = "User question"
self.mock_prompt1.created_at = "2023-01-01"
self.mock_prompt2 = MagicMock(spec=Prompt)
self.mock_prompt2.is_user = False
self.mock_prompt2.text = "AI response"
self.mock_prompt2.created_at = "2023-01-02"
async def test_format_history(self):
mock_manager = AsyncMock()
mock_manager.order_by.return_value.alist.return_value = [self.mock_prompt1, self.mock_prompt2]
with patch('services.rag_services.Prompt.objects.filter', return_value=mock_manager):
result = await self.async_service._format_history(self.mock_conversation)
expected = "User: User question\nAI: AI response"
self.assertEqual(result, expected)
mock_manager.order_by.assert_called_once_with('created_at')
async def test_retriever_with_history(self):
input_dict = {
"query": "test query",
"conversation": self.mock_conversation
}
self.async_service.search_documents = AsyncMock(return_value=["doc1", "doc2"])
result = await self.async_service._retriever_with_history(input_dict)
self.async_service.search_documents.assert_awaited_once_with(
"test query",
self.mock_conversation.workspace
)
self.assertEqual(result, ["doc1", "doc2"])
async def test_search_documents(self):
mock_retriever = AsyncMock()
mock_retriever.aget_relevant_documents.return_value = ["doc1", "doc2"]
self.async_service.vector_store.as_retriever.return_value = mock_retriever
result = await self.async_service.search_documents("test query", self.mock_conversation.workspace)
self.async_service.vector_store.as_retriever.assert_called_once_with(
search_type="similarity",
search_kwargs={
"k": 4,
"filter": {"workspace_id": self.mock_conversation.workspace.id}
}
)
self.assertEqual(result, ["doc1", "doc2"])
async def test_generate_response(self):
chain_input = {
"query": "test query",
"conversation": self.mock_conversation
}
mock_stream = ["chunk1", "chunk2", "chunk3"]
self.async_service.rag_chain.astream.return_value = mock_stream
chunks = []
async for chunk in self.async_service.generate_response(self.mock_conversation, "test query"):
chunks.append(chunk)
self.async_service.rag_chain.astream.assert_awaited_once_with(chain_input)
self.assertEqual(chunks, mock_stream)

View File

@@ -0,0 +1,67 @@
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.llms import Ollama
from typing import Optional
class TitleGenerator:
"""
Generates short, descriptive titles for conversations based on the first prompt.
"""
def __init__(self):
self.llm = Ollama(
model="llama3",
temperature=0.5, # Slightly creative but not too random
top_k=20,
num_ctx=2048 # Shorter context needed for titles
)
self.title_prompt = ChatPromptTemplate.from_messages([
("system", """You are a conversation title generator. Create a very short (2-5 word) title based on the user's first message.
Rules:
1. Keep it extremely concise
2. Capture the main topic or intent
3. Use title case
4. No quotes or punctuation
5. Never exceed 5 words
Examples:
- "What's the weather today?""Weather Inquiry"
- "Explain quantum computing""Quantum Computing Explanation"
- "Generate an image of a dragon""Dragon Image Generation"
- "Find our company's privacy policy""Privacy Policy Search"
Return ONLY the title, nothing else."""),
("human", "{prompt}")
])
self.chain = self.title_prompt | self.llm
async def generate_async(self, prompt: str) -> str:
"""Generate title asynchronously"""
try:
response = await self.chain.ainvoke({"prompt": prompt})
return self._clean_response(response)
except Exception as e:
print(f"Title generation error: {e}")
return "Conversation"
def generate(self, prompt: str) -> str:
"""Generate title synchronously"""
try:
response = self.chain.invoke({"prompt": prompt})
return self._clean_response(response)
except Exception as e:
print(f"Title generation error: {e}")
return "Conversation"
def _clean_response(self, response: str) -> str:
"""Clean and format the LLM response"""
# Remove any quotes or punctuation
response = response.strip('"\'.!? \n\t')
# Ensure title case and trim
return response.title()[:50] # Hard limit for safety
# Singleton instance
title_generator = TitleGenerator()

View File

@@ -0,0 +1,18 @@
from django.db.models.signals import post_save, post_delete
from django.dispatch import receiver
from chat_backend.models import Document
from .services.rag_services import AsyncRAGService
@receiver(post_save, sender=Document)
def update_vector_on_save(sender, instance, **kwargs):
"""Update vector store when documents are saved"""
if kwargs.get('created', False):
rag_service = AsyncRAGService()
rag_service.ingest_documents()
@receiver(post_delete, sender=Document)
def delete_vector_on_remove(sender, instance, **kwargs):
"""Handle document deletion by re-indexing the whole workspace"""
rag_service = AsyncRAGService()
rag_service.ingest_documents()

View File

@@ -0,0 +1,97 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Reset Password for Chat by AI ML Operations, LLC</title>
<style>
/* Basic reset for email clients */
body, table, td, a {
-webkit-text-size-adjust: 100%;
-ms-text-size-adjust: 100%;
}
table, td {
mso-table-lspace: 0pt;
mso-table-rspace: 0pt;
}
img {
border: 0;
height: auto;
line-height: 100%;
outline: none;
text-decoration: none;
-ms-interpolation-mode: bicubic;
}
body {
margin: 0;
padding: 0;
font-family: Arial, sans-serif;
background-color: #f4f4f4;
}
.email-container {
max-width: 600px;
margin: 0 auto;
background-color: #ffffff;
border: 1px solid #dddddd;
}
.header {
background-color: #007BFF;
color: #ffffff;
padding: 20px;
text-align: center;
}
.content {
padding: 20px;
color: #333333;
}
.footer {
background-color: #f4f4f4;
color: #777777;
text-align: center;
padding: 10px;
font-size: 12px;
}
.feedback-title {
font-size: 18px;
font-weight: bold;
margin-bottom: 10px;
}
.feedback-text {
font-size: 14px;
line-height: 1.5;
}
</style>
</head>
<body>
<table role="presentation" width="100%" cellspacing="0" cellpadding="0" border="0" align="center">
<tr>
<td>
<!-- Email Container -->
<div class="email-container">
<!-- Header -->
<div class="header">
<h1>Password Reset for AI ML Operations, LLC Chat Services</h1>
</div>
<!-- Content -->
<div class="content">
<p>Hello,</p>
<p>There has been a request for a password reset. If you didn't requets this, please email ryan@aimloperations.com</p>
<p>Please click <a href="{{ url }}">link</a> to set your password.</p>
<p>Once you have set your password go <a href="https://chat.aimloperations.com">here</a> to get started.</p>
<p>Thank you.</p>
</div>
<!-- Footer -->
<div class="footer">
<p>This is an automated message. Please do not reply to this email.</p>
<p>&copy; 2023-2025 AI ML Operations, LLC. All rights reserved.</p>
</div>
</div>
</td>
</tr>
</table>
</body>
</html>

View File

@@ -0,0 +1,3 @@
Password Reset for AI ML Operations, LLC Chat Services
"Password reset for chat.aimloperations.com. Please use {{ url }} to set your password"

View File

@@ -1,3 +1,210 @@
from django.test import TestCase
# Create your tests here.
from django.test import TestCase, Client
from django.urls import reverse
from django.contrib.auth.models import User
from rest_framework.test import APIClient, APITestCase
from rest_framework import status
from .models import DocumentWorkspace, Document, Company
from django.contrib.auth import get_user_model
import tempfile
from django.core.files.uploadedfile import SimpleUploadedFile
# Minimal valid PDF bytes
VALID_PDF_BYTES = (
b'%PDF-1.3\n'
b'1 0 obj\n'
b'<< /Type /Catalog /Pages 2 0 R >>\n'
b'endobj\n'
b'2 0 obj\n'
b'<< /Type /Pages /Kids [3 0 R] /Count 1 >>\n'
b'endobj\n'
b'3 0 obj\n'
b'<< /Type /Page /Parent 2 0 R /Resources << >> /MediaBox [0 0 612 792] /Contents 4 0 R >>\n'
b'endobj\n'
b'4 0 obj\n'
b'<< /Length 44 >>\n'
b'stream\n'
b'BT /F1 12 Tf 72 720 Td (Test PDF) Tj ET\n'
b'endstream\n'
b'endobj\n'
b'xref\n'
b'0 5\n'
b'0000000000 65535 f \n'
b'0000000009 00000 n \n'
b'0000000058 00000 n \n'
b'0000000117 00000 n \n'
b'0000000223 00000 n \n'
b'trailer\n'
b'<< /Size 5 /Root 1 0 R >>\n'
b'startxref\n'
b'317\n'
b'%%EOF'
)
class DocumentWorkspaceViewsTestCase(APITestCase):
def setUp(self):
self.company = Company.objects.create(
name="test",
state="IL",
zipcode="60189",
address="1968 Greensboro Dr"
)
self.user = get_user_model().objects.create_user(
company=self.company,
username='testuser',
password='testpass123',
email="test@test.com",
)
self.client = APIClient()
self.client.force_authenticate(user=self.user)
self.workspace = DocumentWorkspace.objects.create(
company = self.user.company,
name='Test Workspace'
)
def test_list_workspaces(self):
url = reverse('document_workspaces')
response = self.client.get(url)
self.assertEqual(response.status_code, status.HTTP_200_OK)
self.assertEqual(len(response.data), 1)
self.assertEqual(response.data[0]['name'], 'Test Workspace')
def test_create_workspace(self):
url = reverse('document_workspaces')
data = {
'name': 'New Workspace'
}
response = self.client.post(url, data, format='json')
self.assertEqual(response.status_code, status.HTTP_201_CREATED)
self.assertEqual(DocumentWorkspace.objects.count(), 2)
def test_retrieve_workspace(self):
url = reverse('document_workspaces')
response = self.client.get(url)
self.assertEqual(response.status_code, status.HTTP_200_OK)
self.assertEqual(response.data[0]['name'], 'Test Workspace')
# def test_update_workspace(self):
# url = reverse('document_workspaces')
# data = {
# 'name': 'Updated Workspace'
# }
# response = self.client.post(url, data, format='json')
# self.assertEqual(response.status_code, status.HTTP_201_CREATED)
# self.workspace.refresh_from_db()
# self.assertEqual(self.workspace.name, 'Updated Workspace')
# def test_delete_workspace(self):
# url = reverse('document_workspaces', args=[self.workspace.id])
# response = self.client.delete(url)
# self.assertEqual(response.status_code, status.HTTP_204_NO_CONTENT)
# self.assertEqual(DocumentWorkspace.objects.count(), 0)
class DocumentViewsTestCase(APITestCase):
def setUp(self):
self.company = Company.objects.create(
name="test",
state="IL",
zipcode="60189",
address="1968 Greensboro Dr"
)
self.user = get_user_model().objects.create_user(
company=self.company,
username='testuser',
password='testpass123',
email="test@test.com",
)
self.client = APIClient()
self.client.force_authenticate(user=self.user)
self.workspace = DocumentWorkspace.objects.create(
company=self.user.company,
name='Test Workspace'
)
# Create a test file
self.test_file = SimpleUploadedFile(
"test.pdf",
VALID_PDF_BYTES,
content_type="application/pdf"
)
def test_upload_document(self):
url = reverse('documents')
data = {
'file': self.test_file
}
response = self.client.post(url, data, format='multipart')
self.assertEqual(response.status_code, status.HTTP_201_CREATED)
self.assertEqual(Document.objects.count(), 1)
document = Document.objects.first()
self.assertEqual(document.workspace.id, self.workspace.id)
self.assertTrue(document.processed) # Should be False initially
def test_list_documents(self):
# First create a document
Document.objects.create(
workspace=self.workspace,
file=self.test_file
)
url = reverse('documents')
response = self.client.get(url)
self.assertEqual(response.status_code, status.HTTP_200_OK)
self.assertEqual(len(response.data), 1)
self.assertIn('test', response.data[0]['file'])
self.assertIn('pdf', response.data[0]['file'])
# def test_delete_document(self):
# document = Document.objects.create(
# workspace=self.workspace,
# file=self.test_file
# )
# url = reverse('document-detail', args=[document.id])
# response = self.client.delete(url)
# self.assertEqual(response.status_code, status.HTTP_204_NO_CONTENT)
# self.assertEqual(Document.objects.count(), 0)
def test_upload_invalid_file(self):
url = reverse('documents')
data = {
'file': 'not a file'
}
response = self.client.post(url, data, format='multipart')
self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST)
def test_access_other_users_documents(self):
# Create another user
other_company = Company.objects.create(
name="test2",
state="IL",
zipcode="60189",
address="1968 Greensboro Dr"
)
other_user = get_user_model().objects.create_user(
company=other_company,
username='otheruser',
password='otherpass123',
email="testing2@test.com"
)
other_workspace = DocumentWorkspace.objects.create(
company = other_user.company,
name='Other Workspace'
)
other_document = Document.objects.create(
workspace=other_workspace,
file=self.test_file
)
# Try to access the other user's document
url = reverse('documents_details', kwargs={"document_id":other_document.id})
response = self.client.get(url)
self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND)

View File

@@ -14,27 +14,42 @@ from .views import (
ConversationDetailView,
CompanyUsersView,
SetUserPassword,
ResetUserPassword,
ConversationPreferences,
UserPromptAnalytics,
UserConversationAnalytics,
CompanyUsageAnalytics,
AdminAnalytics
AdminAnalytics,
reset_password,
DocumentWorkspaceView,
DocumentUploadView,
DocumentDetailView
)
from rest_framework.routers import DefaultRouter
urlpatterns = [
path("token/obtain/", CustomObtainTokenView.as_view(), name="token_create"),
path("token/refresh/", jwt_views.TokenRefreshView.as_view(), name="token_refresh"),
path("user/create/", CustomUserCreate.as_view(), name="create_user"),
path("user/invite/", CustomUserInvite.as_view(), name="invite_user"),
path("user/set_password/<slug:slug>/", SetUserPassword.as_view(), name="set_password"),
path("user/reset_password/", reset_password, name="reset_password"),
path(
"user/set_password/<slug:slug>/", SetUserPassword.as_view(), name="set_password"
),
path(
"blacklist/",
LogoutAndBlacklistRefreshTokenForUserView.as_view(),
name="blacklist",
),
path("user/get/", CustomUserGet.as_view(), name="get_user"),
path("user/acknowledge_tos/", AcknowledgeTermsOfService.as_view(), name="acknowledge_tos"),
path("company_users",CompanyUsersView.as_view(), name="company_users"),
path(
"user/acknowledge_tos/",
AcknowledgeTermsOfService.as_view(),
name="acknowledge_tos",
),
path("company_users", CompanyUsersView.as_view(), name="company_users"),
path("user/is_authenticated/", is_authenticated, name="is_authenticated"),
path("announcment/get/", AnnouncmentView.as_view(), name="get_announcments"),
path("conversations", ConversationsView.as_view(), name="conversations"),
@@ -44,9 +59,32 @@ urlpatterns = [
ConversationDetailView.as_view(),
name="conversation_details",
),
path("conversation_preferences", ConversationPreferences.as_view(), name="conversation_preferences"),
path("analytics/user_prompts/", UserPromptAnalytics.as_view(), name="analytics_user_prompts"),
path("analytics/user_conversations/", UserConversationAnalytics.as_view(), name="analytics_user_conversations"),
path("analytics/company_usage/", CompanyUsageAnalytics.as_view(), name="analytics_company_usage"),
path(
"conversation_preferences",
ConversationPreferences.as_view(),
name="conversation_preferences",
),
path(
"analytics/user_prompts/",
UserPromptAnalytics.as_view(),
name="analytics_user_prompts",
),
path(
"analytics/user_conversations/",
UserConversationAnalytics.as_view(),
name="analytics_user_conversations",
),
path(
"analytics/company_usage/",
CompanyUsageAnalytics.as_view(),
name="analytics_company_usage",
),
path("analytics/admin/", AdminAnalytics.as_view(), name="analytics_admin"),
# document urls
path("document_workspaces/", DocumentWorkspaceView.as_view(), name="document_workspaces"),
path("documents/", DocumentUploadView.as_view(), name="documents"),
path("documents_details/<int:document_id>", DocumentDetailView.as_view(), name="documents_details"),
]

View File

@@ -1,7 +1,8 @@
import datetime
def last_day_of_month(any_day):
# The day 28 exists in every month. 4 days later, it's always next month
next_month = any_day.replace(day=28) + datetime.timedelta(days=4)
# subtracting the number of the current day brings us back one month
return next_month - datetime.timedelta(days=next_month.day)
# The day 28 exists in every month. 4 days later, it's always next month
next_month = any_day.replace(day=28) + datetime.timedelta(days=4)
# subtracting the number of the current day brings us back one month
return next_month - datetime.timedelta(days=next_month.day)

File diff suppressed because it is too large Load Diff

View File

@@ -13,13 +13,14 @@ from django.core.asgi import get_asgi_application
from channels.routing import ProtocolTypeRouter, URLRouter
from channels.auth import AuthMiddlewareStack
import chat_backend.routing
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'llm_be.settings')
application = ProtocolTypeRouter({
"http": get_asgi_application(),
"websocket": AuthMiddlewareStack(
URLRouter(
chat_backend.routing.websocket_urlpatterns
)
),
})
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "llm_be.settings")
application = ProtocolTypeRouter(
{
"http": get_asgi_application(),
"websocket": AuthMiddlewareStack(
URLRouter(chat_backend.routing.websocket_urlpatterns)
),
}
)

View File

@@ -22,80 +22,86 @@ BASE_DIR = Path(__file__).resolve().parent.parent
# See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/
# SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = 'django-insecure-6suk6fj5q2)1tj%)f(wgw1smnliv5-#&@zvgvj1wp#(#@h#31x'
SECRET_KEY = "django-insecure-6suk6fj5q2)1tj%)f(wgw1smnliv5-#&@zvgvj1wp#(#@h#31x"
# SECURITY WARNING: don't run with debug turned on in production!
DEBUG = True
ALLOWED_HOSTS = ['*.aimloperations.com','localhost','127.0.0.1','chat.aimloperations.com','chatbackend.aimloperations.com']
CORS_ALLOW_CREDENTIALS = False
ALLOWED_HOSTS = [
"*.aimloperations.com",
"localhost",
"127.0.0.1",
"localhost:3000",
"127.0.0.1:3000",
"chat.aimloperations.com",
"chatbackend.aimloperations.com",
]
CORS_ORIGIN_ALLOW_ALL = True
CSRF_TRUSTED_ORIGINS = ["http://localhost", "http://127.0.0.1", "http://localhost:3000"]
# Application definition
INSTALLED_APPS = [
'daphne',
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'chat_backend',
'rest_framework',
'corsheaders',
'rest_framework_simplejwt.token_blacklist',
"daphne",
"django.contrib.admin",
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sessions",
"django.contrib.messages",
"django.contrib.staticfiles",
"chat_backend",
"rest_framework",
"corsheaders",
"rest_framework_simplejwt.token_blacklist",
]
MIDDLEWARE = [
'django.middleware.security.SecurityMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
"django.middleware.security.SecurityMiddleware",
"django.contrib.sessions.middleware.SessionMiddleware",
"django.middleware.common.CommonMiddleware",
"django.middleware.csrf.CsrfViewMiddleware",
"django.contrib.auth.middleware.AuthenticationMiddleware",
"django.contrib.messages.middleware.MessageMiddleware",
"django.middleware.clickjacking.XFrameOptionsMiddleware",
"corsheaders.middleware.CorsMiddleware",
"django.middleware.common.CommonMiddleware",
]
ROOT_URLCONF = 'llm_be.urls'
ROOT_URLCONF = "llm_be.urls"
# SETTINGS_PATH = os.path.dirname(os.path.dirname(__file__))
# TEMPLATE_DIRS = (
# os.path.join(SETTINGS_PATH, 'templates'),
# )
print(os.path.join(BASE_DIR, 'templates'))
TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [os.path.join(BASE_DIR, 'templates')],
'APP_DIRS': True,
'OPTIONS': {
'context_processors': [
'django.template.context_processors.debug',
'django.template.context_processors.request',
'django.contrib.auth.context_processors.auth',
'django.contrib.messages.context_processors.messages',
"BACKEND": "django.template.backends.django.DjangoTemplates",
"DIRS": [os.path.join(BASE_DIR, "templates")],
"APP_DIRS": True,
"OPTIONS": {
"context_processors": [
"django.template.context_processors.debug",
"django.template.context_processors.request",
"django.contrib.auth.context_processors.auth",
"django.contrib.messages.context_processors.messages",
],
},
},
]
WSGI_APPLICATION = 'llm_be.wsgi.application'
ASGI_APPLICATION = 'llm_be.asgi.application'
WSGI_APPLICATION = "llm_be.wsgi.application"
ASGI_APPLICATION = "llm_be.asgi.application"
# Database
# https://docs.djangoproject.com/en/3.2/ref/settings/#databases
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.sqlite3',
'NAME': BASE_DIR / 'db.sqlite3',
"default": {
"ENGINE": "django.db.backends.sqlite3",
"NAME": BASE_DIR / "db.sqlite3",
}
}
@@ -105,28 +111,26 @@ DATABASES = {
AUTH_PASSWORD_VALIDATORS = [
{
'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator',
"NAME": "django.contrib.auth.password_validation.UserAttributeSimilarityValidator",
},
{
'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',
"NAME": "django.contrib.auth.password_validation.MinimumLengthValidator",
},
{
'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator',
"NAME": "django.contrib.auth.password_validation.CommonPasswordValidator",
},
{
'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator',
"NAME": "django.contrib.auth.password_validation.NumericPasswordValidator",
},
]
# Internationalization
# https://docs.djangoproject.com/en/3.2/topics/i18n/
LANGUAGE_CODE = 'en-us'
LANGUAGE_CODE = "en-us"
TIME_ZONE = 'UTC'
TIME_ZONE = "UTC"
USE_I18N = True
@@ -138,39 +142,37 @@ USE_TZ = True
# Static files (CSS, JavaScript, Images)
# https://docs.djangoproject.com/en/3.2/howto/static-files/
STATIC_URL = '/static/'
STATIC_URL = "/static/"
# Default primary key field type
# https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field
DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
DEFAULT_AUTO_FIELD = "django.db.models.BigAutoField"
# custom user model
AUTH_USER_MODEL = 'chat_backend.CustomUser'
AUTH_USER_MODEL = "chat_backend.CustomUser"
# rest framework jwt stuff
REST_FRAMEWORK = {
'DEFAULT_PERMISSION_CLASSES': (
'rest_framework.permissions.IsAuthenticated',
),
'DEFAULT_AUTHENTICATION_CLASSES': (
'rest_framework_simplejwt.authentication.JWTAuthentication',
), #
"DEFAULT_PERMISSION_CLASSES": ("rest_framework.permissions.IsAuthenticated",),
"DEFAULT_AUTHENTICATION_CLASSES": (
"rest_framework_simplejwt.authentication.JWTAuthentication",
), #
}
SIMPLE_JWT = {
'ACCESS_TOKEN_LIFETIME':timedelta(hours=5),
'REFRESH_TOKEN_LIFETIME':timedelta(days=14),
'ROTATE_REFRESH_TOKENS':True,
'BLACKLIST_AFTER_ROTATION':True,
'ALGORITHM':"HS256",
"SIGNING_KEY":SECRET_KEY,
'VERIFYING_KEY':None,
"AUTH_HEADER_TYPES":('JWT',),
'USER_ID_FIELD':'id',
'USER_ID_CLAIM':'user_id',
'AUTH_TOKEN_CLASSES':('rest_framework_simplejwt.tokens.AccessToken',),
'TOKEN_TYPE_CLAIM':'token_type',
"ACCESS_TOKEN_LIFETIME": timedelta(hours=24),
"REFRESH_TOKEN_LIFETIME": timedelta(days=14),
"ROTATE_REFRESH_TOKENS": True,
"BLACKLIST_AFTER_ROTATION": True,
"ALGORITHM": "HS256",
"SIGNING_KEY": SECRET_KEY,
"VERIFYING_KEY": None,
"AUTH_HEADER_TYPES": ("JWT",),
"USER_ID_FIELD": "id",
"USER_ID_CLAIM": "user_id",
"AUTH_TOKEN_CLASSES": ("rest_framework_simplejwt.tokens.AccessToken",),
"TOKEN_TYPE_CLAIM": "token_type",
}
# CORS settings
@@ -181,8 +183,8 @@ CORS_ALLOWED_ORIGINS = [
# channel settings
CHANNEL_LAYERS = {
'default': {
'BACKEND': 'channels.layers.InMemoryChannelLayer',
"default": {
"BACKEND": "channels.layers.InMemoryChannelLayer",
},
}
@@ -198,8 +200,11 @@ CHANNEL_LAYERS = {
# EMAIL_TIMEOUT = os.getenv("APP_EMAIL_TIMEOUT", 60)
# SMTP2GO
EMAIL_HOST = 'mail.smtp2go.com'
EMAIL_HOST_USER = 'info.aimloperations.com'
EMAIL_HOST_PASSWORD = 'ZDErIII2sipNNVMz'
EMAIL_HOST = "mail.smtp2go.com"
EMAIL_HOST_USER = "info.aimloperations.com"
EMAIL_HOST_PASSWORD = "ZDErIII2sipNNVMz"
EMAIL_PORT = 2525
EMAIL_USE_TLS = True
EMAIL_USE_TLS = True
# Captcha
CAPTCHA_SECRET_KEY = "6LfENu4qAAAAABdrj6JTviq-LfdPP5imhE-Os7h9"

View File

@@ -13,12 +13,17 @@ Including another URLconf
1. Import the include() function: from django.urls import include, path
2. Add a URL to urlpatterns: path('blog/', include('blog.urls'))
"""
from django.contrib import admin
from django.urls import path, include
from django.conf import settings
from django.conf.urls.static import static
urlpatterns = [
path('admin/', admin.site.urls),
path('api/', include('chat_backend.urls')),
] + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
urlpatterns = (
[
path("admin/", admin.site.urls),
path("api/", include("chat_backend.urls")),
]
+ static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)
+ static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
)

View File

@@ -11,6 +11,6 @@ import os
from django.core.wsgi import get_wsgi_application
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'llm_be.settings')
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "llm_be.settings")
application = get_wsgi_application()

View File

@@ -6,7 +6,7 @@ import sys
def main():
"""Run administrative tasks."""
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'llm_be.settings')
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "llm_be.settings")
try:
from django.core.management import execute_from_command_line
except ImportError as exc:
@@ -18,5 +18,5 @@ def main():
execute_from_command_line(sys.argv)
if __name__ == '__main__':
if __name__ == "__main__":
main()

View File

@@ -30,16 +30,16 @@ djangorestframework-simplejwt==5.3.1
duckdb==1.1.3
et_xmlfile==2.0.0
exceptiongroup==1.2.2
Faker==33.1.0
Faker
filelock==3.16.1
fonttools==4.55.3
frozenlist==1.5.0
fsspec==2024.12.0
greenlet==3.1.1
h11==0.14.0
httpcore==1.0.7
httpx==0.27.2
httpx-sse==0.4.0
httpcore
httpx
httpx-sse
hyperlink==21.0.0
idna==3.10
importlib_resources==6.4.5
@@ -48,14 +48,14 @@ Jinja2==3.1.5
jiter==0.8.2
jsonpatch==1.33
jsonpointer==3.0.0
kiwisolver==1.4.7
langchain==0.3.13
langchain-community==0.3.13
langchain-core==0.3.28
langchain-ollama==0.2.2
langchain-openai==0.2.14
langchain-text-splitters==0.3.4
langsmith==0.2.7
kiwisolver
langchain
langchain-community
langchain-core
langchain-ollama
langchain-openai
langchain-text-splitters
langsmith
lxml==5.3.0
MarkupSafe==3.0.2
marshmallow==3.23.2
@@ -77,14 +77,14 @@ nvidia-cusparse-cu12==12.3.1.170
nvidia-nccl-cu12==2.21.5
nvidia-nvjitlink-cu12==12.4.127
nvidia-nvtx-cu12==12.4.127
ollama==0.4.5
ollama-python==0.1.2
openai==1.58.1
ollama
ollama-python
openai
openpyxl==3.1.5
orjson==3.10.13
packaging==24.2
pandas==2.2.3
pandasai==2.4.1
pandasai
pathspec==0.12.1
pillow==11.0.0
platformdirs==4.3.6

208
requirements.txt Normal file
View File

@@ -0,0 +1,208 @@
aiofiles==24.1.0
aiohappyeyeballs==2.6.1
aiohttp==3.11.18
aiosignal==1.3.2
annotated-types==0.7.0
anyio==4.8.0
asgiref==3.8.1
astor==0.8.1
attrs==25.1.0
autobahn==24.4.2
Automat==24.8.1
backoff==2.2.1
bcrypt==4.3.0
beautifulsoup4==4.13.4
black==25.1.0
build==1.2.2.post1
cachetools==5.5.2
certifi==2025.1.31
cffi==1.17.1
channels==4.2.0
chardet==5.2.0
charset-normalizer==3.4.1
chroma-hnswlib==0.7.6
chromadb==1.0.7
click==8.1.8
coloredlogs==15.0.1
constantly==23.10.4
contourpy==1.3.1
cryptography==44.0.2
cycler==0.12.1
daphne==4.1.2
dataclasses-json==0.6.7
Deprecated==1.2.18
distro==1.9.0
Django==5.1.7
django-autoslug==1.9.9
django-cors-headers==4.7.0
django-filter==25.1
djangorestframework==3.15.2
djangorestframework_simplejwt==5.5.0
duckdb==1.2.1
durationpy==0.9
emoji==2.14.1
eval_type_backport==0.2.2
Faker==37.0.0
fastapi==0.115.9
filelock==3.17.0
filetype==1.2.0
flatbuffers==25.2.10
fonttools==4.56.0
frozenlist==1.6.0
fsspec==2025.2.0
google-auth==2.39.0
googleapis-common-protos==1.70.0
greenlet==3.1.1
grpcio==1.71.0
h11==0.14.0
html5lib==1.1
httpcore==1.0.7
httptools==0.6.4
httpx==0.28.1
httpx-sse==0.4.0
huggingface-hub==0.30.2
humanfriendly==10.0
hyperlink==21.0.0
idna==3.10
importlib_metadata==8.6.1
importlib_resources==6.5.2
incremental==24.7.2
Jinja2==3.1.6
jiter==0.8.2
joblib==1.4.2
jsonpatch==1.33
jsonpointer==3.0.0
jsonschema==4.23.0
jsonschema-specifications==2025.4.1
kiwisolver==1.4.8
kubernetes==32.0.1
langchain==0.3.24
langchain-community==0.3.23
langchain-core==0.3.56
langchain-ollama==0.2.3
langchain-text-splitters==0.3.8
langdetect==1.0.9
langsmith==0.3.13
lxml==5.4.0
Markdown==3.7
markdown-it-py==3.0.0
MarkupSafe==3.0.2
marshmallow==3.26.1
matplotlib==3.10.1
mdurl==0.1.2
mmh3==5.1.0
mpmath==1.3.0
multidict==6.4.3
mypy-extensions==1.0.0
nest-asyncio==1.6.0
networkx==3.4.2
nltk==3.9.1
numpy==2.2.3
nvidia-cublas-cu12==12.4.5.8
nvidia-cuda-cupti-cu12==12.4.127
nvidia-cuda-nvrtc-cu12==12.4.127
nvidia-cuda-runtime-cu12==12.4.127
nvidia-cudnn-cu12==9.1.0.70
nvidia-cufft-cu12==11.2.1.3
nvidia-curand-cu12==10.3.5.147
nvidia-cusolver-cu12==11.6.1.9
nvidia-cusparse-cu12==12.3.1.170
nvidia-cusparselt-cu12==0.6.2
nvidia-nccl-cu12==2.21.5
nvidia-nvjitlink-cu12==12.4.127
nvidia-nvtx-cu12==12.4.127
oauthlib==3.2.2
olefile==0.47
ollama==0.4.7
onnxruntime==1.21.1
openai==1.65.4
opentelemetry-api==1.32.1
opentelemetry-exporter-otlp-proto-common==1.32.1
opentelemetry-exporter-otlp-proto-grpc==1.32.1
opentelemetry-instrumentation==0.53b1
opentelemetry-instrumentation-asgi==0.53b1
opentelemetry-instrumentation-fastapi==0.53b1
opentelemetry-proto==1.32.1
opentelemetry-sdk==1.32.1
opentelemetry-semantic-conventions==0.53b1
opentelemetry-util-http==0.53b1
orjson==3.10.15
overrides==7.7.0
packaging==24.2
pandas==2.2.3
pandasai==2.4.2
pathspec==0.12.1
pillow==11.1.0
platformdirs==4.3.6
posthog==4.0.1
propcache==0.3.1
protobuf==5.29.4
psutil==7.0.0
pyasn1==0.6.1
pyasn1_modules==0.4.1
pycparser==2.22
pydantic==2.11.4
pydantic-settings==2.9.1
pydantic_core==2.33.2
Pygments==2.19.1
PyJWT==2.10.1
pyOpenSSL==25.0.0
pyparsing==3.2.1
pypdf==5.4.0
PyPika==0.48.9
pyproject_hooks==1.2.0
python-dateutil==2.9.0.post0
python-dotenv==1.0.1
python-iso639==2025.2.18
python-magic==0.4.27
python-oxmsg==0.0.2
pytz==2025.1
PyYAML==6.0.2
RapidFuzz==3.13.0
referencing==0.36.2
regex==2024.11.6
requests==2.32.3
requests-oauthlib==2.0.0
requests-toolbelt==1.0.0
rich==14.0.0
rpds-py==0.24.0
rsa==4.9.1
scipy==1.15.2
service-identity==24.2.0
setuptools==75.8.2
shellingham==1.5.4
six==1.17.0
sniffio==1.3.1
soupsieve==2.7
SQLAlchemy==2.0.38
sqlglot==26.9.0
sqlglotrs==0.4.0
sqlparse==0.5.3
starlette==0.45.3
sympy==1.13.1
tenacity==9.0.0
tokenizers==0.21.1
torch==2.6.0
tqdm==4.67.1
triton==3.2.0
Twisted==24.11.0
txaio==23.1.1
typer==0.15.3
typing-inspect==0.9.0
typing-inspection==0.4.0
typing_extensions==4.12.2
tzdata==2025.1
unstructured==0.17.2
unstructured-client==0.34.0
urllib3==2.3.0
uvicorn==0.34.2
uvloop==0.21.0
watchfiles==1.0.5
webencodings==0.5.1
websocket-client==1.8.0
websockets==15.0.1
wrapt==1.17.2
yarl==1.20.0
zipp==3.21.0
zope.interface==7.2
zstandard==0.23.0

9
strip_and_upgrade.py Normal file
View File

@@ -0,0 +1,9 @@
outfile = open("requirements.txt",'w')
for line in open('requirements.dev','r'):
line = line.strip()
if line:
values = line.split('==')
print(values[0])
outfile.write(values[0] + '\n')