RAG implementation, content moderation, prompt classification, new LLM chain, document storage

This commit is contained in:
2025-05-14 03:27:38 -05:00
parent 57695353d0
commit f5d29166a6
32 changed files with 2628 additions and 359 deletions

3
.gitignore vendored
View File

@@ -167,4 +167,5 @@ cython_debug/
# and can be added to the global gitignore or merged into this file. For a more nuclear # and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder. # option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/ #.idea/
chroma_db/
documents/

View File

@@ -1,5 +1,16 @@
from django.contrib import admin from django.contrib import admin
from .models import CustomUser, Announcement, Company, LLMModels, Conversation, Prompt, Feedback, PromptMetric from .models import (
CustomUser,
Announcement,
Company,
LLMModels,
Conversation,
Prompt,
Feedback,
PromptMetric,
DocumentWorkspace,
Document
)
# Register your models here. # Register your models here.
@@ -27,16 +38,16 @@ class CustomUserAdmin(admin.ModelAdmin):
"has_signed_tos", "has_signed_tos",
"last_login", "last_login",
"slug", "slug",
"get_set_password_url" "get_set_password_url",
) )
search_fields = ("fields", "username", "first_name", "last_name", "slug") search_fields = ("fields", "username", "first_name", "last_name", "slug")
class FeedbackAdmin(admin.ModelAdmin): class FeedbackAdmin(admin.ModelAdmin):
model = Feedback model = Feedback
search_fields = ("status", "text", "get_user_email") search_fields = ("status", "text", "get_user_email")
list_display= ( list_display = ("status", "get_user_email", "title", "category")
"status", "get_user_email", "title", "category"
)
class LLMModelsAdmin(admin.ModelAdmin): class LLMModelsAdmin(admin.ModelAdmin):
model = LLMModels model = LLMModels
@@ -55,9 +66,35 @@ class PromptAdmin(admin.ModelAdmin):
list_display = ("message", "user_created", "get_conversation_title") list_display = ("message", "user_created", "get_conversation_title")
search_fields = ("message",) search_fields = ("message",)
class PromptMetricAdmin(admin.ModelAdmin): class PromptMetricAdmin(admin.ModelAdmin):
model = PromptMetric model = PromptMetric
list_display = ("event", "model_name", "prompt_length","reponse_length",'has_file','file_type', "get_duration") list_display = (
"event",
"model_name",
"prompt_length",
"reponse_length",
"has_file",
"file_type",
"get_duration",
)
class DocumentWorkspaceAdmin(admin.ModelAdmin):
model = DocumentWorkspace
list_display = (
"name",
"company",
)
class DocumentAdmin(admin.ModelAdmin):
model = Document
list_display = (
"file",
"active",
"created",
"processed",
)
admin.site.register(Announcement, AnnouncmentAdmin) admin.site.register(Announcement, AnnouncmentAdmin)
@@ -69,3 +106,6 @@ admin.site.register(Conversation, ConversationAdmin)
admin.site.register(Prompt, PromptAdmin) admin.site.register(Prompt, PromptAdmin)
admin.site.register(PromptMetric, PromptMetricAdmin) admin.site.register(PromptMetric, PromptMetricAdmin)
admin.site.register(Feedback, FeedbackAdmin) admin.site.register(Feedback, FeedbackAdmin)
admin.site.register(DocumentWorkspace, DocumentWorkspaceAdmin)
admin.site.register(Document, DocumentAdmin)

View File

@@ -1,6 +1,31 @@
from django.apps import AppConfig from django.apps import AppConfig
from django.conf import settings
from django.db import OperationalError
class ChatBackendConfig(AppConfig): class ChatBackendConfig(AppConfig):
default_auto_field = "django.db.models.BigAutoField" default_auto_field = "django.db.models.BigAutoField"
name = "chat_backend" name = "chat_backend"
def ready(self):
import chat_backend.signals
FORCE_RELOAD = False
if True: #not settings.TESTING: # Don't run during tests
try:
from .services.rag_services import AsyncRAGService
from chat_backend.models import Document
# Check if Chroma needs initialization
if Document.objects.exists():
rag_service = AsyncRAGService()
if rag_service.vector_store._collection.count() == 0:
print("Initializing ChromaDB with existing documents...")
rag_service.ingest_documents()
if FORCE_RELOAD:
print("Force Reload ChromaDB with existing documents...")
rag_service.clear_vector_store()
except OperationalError:
# Database tables might not exist yet during migration
pass

View File

@@ -1,11 +1,13 @@
""" """
llama client - Abstract this in the future llama client - Abstract this in the future
""" """
import ollama import ollama
from typing import List, Dict from typing import List, Dict
class LlamaClient(object): class LlamaClient(object):
def __init__(self, model: str='llama3'): def __init__(self, model: str = "llama3"):
self.client = ollama.Client(host="http://127.0.0.1:11434") self.client = ollama.Client(host="http://127.0.0.1:11434")
self.model = model self.model = model
@@ -13,9 +15,11 @@ class LlamaClient(object):
raise NotImplementedError raise NotImplementedError
def generate_conversation_title(self, message: str): def generate_conversation_title(self, message: str):
response = self.generate_single_message("Summarise the phrase in one to for words\"%s\"" % message) response = self.generate_single_message(
'Summarise the phrase in one to for words"%s"' % message
)
raw_response = response['response'].replace("\"","") raw_response = response["response"].replace('"', "")
return " ".join(raw_response.split()[:4]) return " ".join(raw_response.split()[:4])
def generate_single_message(self, message: str): def generate_single_message(self, message: str):
@@ -24,7 +28,5 @@ class LlamaClient(object):
def get_chat_response(self, messages: List[str]): def get_chat_response(self, messages: List[str]):
return self.client.chat(model=self.model, messages=messages, stream=False) return self.client.chat(model=self.model, messages=messages, stream=False)
def get_streamed_chat_response(self, messages: List[str]): def get_streamed_chat_response(self, messages: List[str]):
return self.client.chat(model=self.model, messages=messages, stream=True) return self.client.chat(model=self.model, messages=messages, stream=True)

View File

@@ -0,0 +1,78 @@
# Generated by Django 5.1.7 on 2025-04-30 18:58
import django.db.models.deletion
import django.utils.timezone
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
("chat_backend", "0019_customuser_conversation_order_and_more"),
]
operations = [
migrations.CreateModel(
name="DocumentWorkspace",
fields=[
(
"id",
models.BigAutoField(
auto_created=True,
primary_key=True,
serialize=False,
verbose_name="ID",
),
),
("created", models.DateTimeField(default=django.utils.timezone.now)),
(
"last_modified",
models.DateTimeField(default=django.utils.timezone.now),
),
("name", models.CharField(max_length=255)),
(
"company",
models.ForeignKey(
on_delete=django.db.models.deletion.CASCADE,
to="chat_backend.company",
),
),
],
options={
"abstract": False,
},
),
migrations.CreateModel(
name="Document",
fields=[
(
"id",
models.BigAutoField(
auto_created=True,
primary_key=True,
serialize=False,
verbose_name="ID",
),
),
("created", models.DateTimeField(default=django.utils.timezone.now)),
(
"last_modified",
models.DateTimeField(default=django.utils.timezone.now),
),
("file", models.FileField(upload_to="documents/")),
("uploaded_at", models.DateTimeField(auto_now_add=True)),
("processed", models.BooleanField(default=False)),
("active", models.BooleanField(default=False)),
(
"workspace",
models.ForeignKey(
on_delete=django.db.models.deletion.CASCADE,
to="chat_backend.documentworkspace",
),
),
],
options={
"abstract": False,
},
),
]

View File

@@ -3,9 +3,11 @@ from django.contrib.auth.models import AbstractUser
from django.utils import timezone from django.utils import timezone
from autoslug import AutoSlugField from autoslug import AutoSlugField
from django.core.files.storage import FileSystemStorage from django.core.files.storage import FileSystemStorage
# Create your models here. # Create your models here.
FILE_STORAGE = FileSystemStorage(location='prompt_files') FILE_STORAGE = FileSystemStorage(location="prompt_files")
class TimeInfoBase(models.Model): class TimeInfoBase(models.Model):
@@ -60,12 +62,18 @@ class CustomUser(AbstractUser):
help_text="Allows the edit/add/remove of users for a company", default=False help_text="Allows the edit/add/remove of users for a company", default=False
) )
deleted = models.BooleanField(help_text="This is to hid accounts", default=False) deleted = models.BooleanField(help_text="This is to hid accounts", default=False)
has_signed_tos = models.BooleanField(default=False, help_text="If the user has signed the TOS") has_signed_tos = models.BooleanField(
slug = AutoSlugField(populate_from='email') default=False, help_text="If the user has signed the TOS"
conversation_order = models.BooleanField(default=True, help_text='How the conversations should display') )
slug = AutoSlugField(populate_from="email")
conversation_order = models.BooleanField(
default=True, help_text="How the conversations should display"
)
def get_set_password_url(self): def get_set_password_url(self):
return f"https://www.chat.aimloperations.com/set_password?slug={self.slug}" return f"https://www.chat.aimloperations.com/set_password?slug={self.slug}"
FEEDBACK_CHOICE = ( FEEDBACK_CHOICE = (
("SUBMITTED", "Submitted"), ("SUBMITTED", "Submitted"),
("RESOLVED", "Resolved"), ("RESOLVED", "Resolved"),
@@ -74,21 +82,26 @@ FEEDBACK_CHOICE = (
) )
FEEDBACK_CATEGORIES = ( FEEDBACK_CATEGORIES = (
('NOT_DEFINED', 'Not defined'), ("NOT_DEFINED", "Not defined"),
('BUG', 'Bug'), ("BUG", "Bug"),
('ENHANCEMENT', 'Enhancement'), ("ENHANCEMENT", "Enhancement"),
('OTHER', 'Other'), ("OTHER", "Other"),
('MAX_CATEGORIES', 'Max Categories'), ("MAX_CATEGORIES", "Max Categories"),
) )
class Feedback(TimeInfoBase): class Feedback(TimeInfoBase):
title = models.TextField(max_length=64, default='') title = models.TextField(max_length=64, default="")
user = models.ForeignKey( user = models.ForeignKey(
CustomUser, on_delete=models.CASCADE, blank=True, null=True CustomUser, on_delete=models.CASCADE, blank=True, null=True
) )
text = models.TextField(max_length=512) text = models.TextField(max_length=512)
status = models.CharField(max_length=24, choices=FEEDBACK_CHOICE, default="SUBMITTED") status = models.CharField(
category = models.CharField(max_length=24, choices=FEEDBACK_CATEGORIES, default="NOT_DEFINED") max_length=24, choices=FEEDBACK_CHOICE, default="SUBMITTED"
)
category = models.CharField(
max_length=24, choices=FEEDBACK_CATEGORIES, default="NOT_DEFINED"
)
def get_user_email(self): def get_user_email(self):
if self.user: if self.user:
@@ -105,9 +118,8 @@ MONTH_CHOICES = (
("DECEMBER", "December"), ("DECEMBER", "December"),
) )
month = models.CharField(max_length=9, month = models.CharField(max_length=9, choices=MONTH_CHOICES, default="JANUARY")
choices=MONTH_CHOICES,
default="JANUARY")
class Announcement(TimeInfoBase): class Announcement(TimeInfoBase):
class Status(models.TextChoices): class Status(models.TextChoices):
@@ -131,7 +143,9 @@ class Conversation(TimeInfoBase):
title = models.CharField( title = models.CharField(
max_length=64, help_text="The title for the conversation", default="" max_length=64, help_text="The title for the conversation", default=""
) )
deleted = models.BooleanField(help_text="This is to hide conversations", default=False) deleted = models.BooleanField(
help_text="This is to hide conversations", default=False
)
def get_user_email(self): def get_user_email(self):
if self.user: if self.user:
@@ -151,8 +165,15 @@ class Prompt(TimeInfoBase):
conversation = models.ForeignKey( conversation = models.ForeignKey(
"Conversation", on_delete=models.CASCADE, blank=True, null=True "Conversation", on_delete=models.CASCADE, blank=True, null=True
) )
file =models.FileField(upload_to=FILE_STORAGE, blank=True, null=True, help_text="file for the prompt") file = models.FileField(
file_type=models.CharField(max_length=16, blank=True, null=True, help_text='file type of the file for the prompt') upload_to=FILE_STORAGE, blank=True, null=True, help_text="file for the prompt"
)
file_type = models.CharField(
max_length=16,
blank=True,
null=True,
help_text="file type of the file for the prompt",
)
def get_conversation_title(self): def get_conversation_title(self):
if self.conversation: if self.conversation:
@@ -164,7 +185,6 @@ class Prompt(TimeInfoBase):
return self.file != None and self.file.storage.exists(self.file.name) return self.file != None and self.file.storage.exists(self.file.name)
class PromptMetric(TimeInfoBase): class PromptMetric(TimeInfoBase):
PROMPT_METRIC_CHOICES = ( PROMPT_METRIC_CHOICES = (
("CREATED", "Created"), ("CREATED", "Created"),
@@ -174,20 +194,40 @@ class PromptMetric(TimeInfoBase):
("MAX_PROMPT_METRIC_CHOICES", "Max Prompt Metric Choices"), ("MAX_PROMPT_METRIC_CHOICES", "Max Prompt Metric Choices"),
) )
prompt_id = models.IntegerField(help_text="The id of the prompt this matches to") prompt_id = models.IntegerField(help_text="The id of the prompt this matches to")
conversation_id = models.IntegerField(help_text="The id of the conversation this matches to") conversation_id = models.IntegerField(
help_text="The id of the conversation this matches to"
)
event = models.CharField( event = models.CharField(
max_length=26, choices=PROMPT_METRIC_CHOICES, default='CREATED' max_length=26, choices=PROMPT_METRIC_CHOICES, default="CREATED"
) )
model_name = models.CharField(max_length=215, help_text="The name of the model") model_name = models.CharField(max_length=215, help_text="The name of the model")
start_time = models.DateTimeField() start_time = models.DateTimeField()
end_time = models.DateTimeField(blank=True, null=True) end_time = models.DateTimeField(blank=True, null=True)
prompt_length = models.IntegerField( help_text="How many characters are in the prompt") prompt_length = models.IntegerField(
reponse_length = models.IntegerField(blank=True, null=True, help_text="How many characters are in the response") help_text="How many characters are in the prompt"
)
reponse_length = models.IntegerField(
blank=True, null=True, help_text="How many characters are in the response"
)
has_file = models.BooleanField(help_text="Is there a file") has_file = models.BooleanField(help_text="Is there a file")
file_type = models.CharField(max_length=16, help_text='The file type, if any', blank=True, null=True) file_type = models.CharField(
max_length=16, help_text="The file type, if any", blank=True, null=True
)
def get_duration(self): def get_duration(self):
if(self.start_time and self.end_time): if self.start_time and self.end_time:
difference = self.end_time - self.start_time difference = self.end_time - self.start_time
return difference.seconds return difference.seconds
return 0 return 0
# Document Models
class DocumentWorkspace(TimeInfoBase):
name = models.CharField(max_length=255)
company = models.ForeignKey(Company, on_delete=models.CASCADE)
class Document(TimeInfoBase):
workspace = models.ForeignKey(DocumentWorkspace, on_delete=models.CASCADE)
file = models.FileField(upload_to='documents/')
uploaded_at = models.DateTimeField(auto_now_add=True)
processed = models.BooleanField(default=False)
active = models.BooleanField(default=False)

View File

@@ -1,8 +1,9 @@
from rest_framework.renderers import BaseRenderer from rest_framework.renderers import BaseRenderer
class ServerSentEventRenderer(BaseRenderer): class ServerSentEventRenderer(BaseRenderer):
media_type = 'text/event-stream' media_type = "text/event-stream"
format = 'txt' format = "txt"
def render(self, data, accepted_media_type=None, renderer_context=None): def render(self, data, accepted_media_type=None, renderer_context=None):
return data return data

View File

@@ -2,6 +2,5 @@ from django.urls import re_path
from .views import ChatConsumerAgain from .views import ChatConsumerAgain
websocket_urlpatterns = [ websocket_urlpatterns = [
re_path(r'ws/chat_again/$', ChatConsumerAgain.as_asgi()), re_path(r"ws/chat_again/$", ChatConsumerAgain.as_asgi()),
] ]

View File

@@ -1,6 +1,16 @@
from rest_framework_simplejwt.serializers import TokenObtainPairSerializer from rest_framework_simplejwt.serializers import TokenObtainPairSerializer
from rest_framework import serializers from rest_framework import serializers
from .models import CustomUser, Announcement, Company, Conversation, Prompt, Feedback, FEEDBACK_CATEGORIES from .models import (
CustomUser,
Announcement,
Company,
Conversation,
Prompt,
Feedback,
FEEDBACK_CATEGORIES,
DocumentWorkspace,
Document
)
class MyTokenObtainPairSerializer(TokenObtainPairSerializer): class MyTokenObtainPairSerializer(TokenObtainPairSerializer):
@@ -25,11 +35,13 @@ class AnnouncmentSerializer(serializers.ModelSerializer):
model = Announcement model = Announcement
fields = "__all__" fields = "__all__"
class FeedbackSerializer(serializers.ModelSerializer): class FeedbackSerializer(serializers.ModelSerializer):
class Meta: class Meta:
model = Feedback model = Feedback
fields = "__all__" fields = "__all__"
class CustomUserSerializer(serializers.ModelSerializer): class CustomUserSerializer(serializers.ModelSerializer):
email = serializers.EmailField(required=True) email = serializers.EmailField(required=True)
username = serializers.CharField() username = serializers.CharField()
@@ -61,9 +73,37 @@ class PromptSerializer(serializers.ModelSerializer):
class Meta: class Meta:
model = Prompt model = Prompt
fields = ("message", "user_created", "created", "id", ) fields = (
"message",
"user_created",
"created",
"id",
)
class BasicUserSerializer(serializers.ModelSerializer): class BasicUserSerializer(serializers.ModelSerializer):
class Meta: class Meta:
model = CustomUser model = CustomUser
fields = ("email", "first_name", "last_name", "is_active","has_usable_password","is_company_manager",'has_signed_tos') fields = (
"email",
"first_name",
"last_name",
"is_active",
"has_usable_password",
"is_company_manager",
"has_signed_tos",
)
# document serializers
class DocumentWorkspaceSerializer(serializers.ModelSerializer):
class Meta:
model = DocumentWorkspace
fields = ['id', 'name', 'created']
read_only_fields = ['id', 'created']
class DocumentSerializer(serializers.ModelSerializer):
class Meta:
model = Document
fields = ['id', 'workspace', 'file', 'uploaded_at', 'processed', 'created', 'active']
read_only_fields = ['id', 'uploaded_at', 'processed', 'created']

View File

View File

@@ -0,0 +1,145 @@
import os
import logging
from typing import Optional, Tuple
from PIL import Image
import torch
from diffusers import StableDiffusionPipeline, DPMSolverSinglestepScheduler
logger = logging.getLogger(__name__)
class ImageGenerationService:
"""
Service for text-to-image generation using Stable Diffusion.
Uses singleton pattern to maintain loaded model in memory.
"""
_instance = None
_model_loaded = False
def __new__(cls):
if cls._instance is None:
cls._instance = super().__new__(cls)
cls._instance._initialize()
return cls._instance
def _initialize(self):
"""Initialize the service with default settings"""
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model_id = "stabilityai/stable-diffusion-2-1"
self.pipeline = None
self.default_params = {
"num_inference_steps": 25,
"guidance_scale": 7.5,
"width": 512,
"height": 512,
}
def load_model(self):
"""Load the Stable Diffusion model"""
if self._model_loaded:
return
try:
logger.info(f"Loading Stable Diffusion model on {self.device}...")
# Use DPMSolver for faster inference
self.pipeline = StableDiffusionPipeline.from_pretrained(
self.model_id,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
)
self.pipeline.scheduler = DPMSolverSinglestepScheduler.from_config(
self.pipeline.scheduler.config
)
self.pipeline = self.pipeline.to(self.device)
# Optimizations
if self.device == "cuda":
self.pipeline.enable_attention_slicing()
self.pipeline.enable_xformers_memory_efficient_attention()
self._model_loaded = True
logger.info("Model loaded successfully")
except Exception as e:
logger.error(f"Failed to load model: {str(e)}")
raise RuntimeError(f"Model loading failed: {str(e)}")
def generate_image(
self,
prompt: str,
negative_prompt: Optional[str] = None,
output_path: Optional[str] = None,
**kwargs
) -> Tuple[Image.Image, dict]:
"""
Generate image from text prompt.
Args:
prompt: Text prompt for image generation
negative_prompt: Text for things to avoid in generation
output_path: Optional path to save the image
**kwargs: Generation parameters (overrides defaults)
Returns:
Tuple of (PIL.Image, generation_parameters)
"""
if not self._model_loaded:
self.load_model()
# Merge default params with overrides
params = {**self.default_params, **kwargs}
try:
logger.info(f"Generating image with prompt: {prompt[:50]}...")
with torch.inference_mode():
result = self.pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
**params
)
image = result.images[0]
if output_path:
os.makedirs(os.path.dirname(output_path), exist_ok=True)
image.save(output_path)
logger.info(f"Image saved to {output_path}")
return image, params
except Exception as e:
logger.error(f"Image generation failed: {str(e)}")
raise RuntimeError(f"Image generation failed: {str(e)}")
class AsyncImageGenerationService:
"""
Asynchronous wrapper for image generation service.
Runs the synchronous service in a thread pool.
"""
def __init__(self):
self.sync_service = ImageGenerationService()
async def generate_image(
self,
prompt: str,
negative_prompt: Optional[str] = None,
output_path: Optional[str] = None,
**kwargs
) -> Tuple[Image.Image, dict]:
"""Async version of generate_image"""
import asyncio
from functools import partial
loop = asyncio.get_event_loop()
func = partial(
self.sync_service.generate_image,
prompt=prompt,
negative_prompt=negative_prompt,
output_path=output_path,
**kwargs
)
return await loop.run_in_executor(None, func)

View File

@@ -0,0 +1,138 @@
from abc import ABC, abstractmethod
from typing import AsyncGenerator, Generator, Optional
from langchain_community.llms import Ollama
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from chat_backend.models import Conversation, Prompt
class LLMService(ABC):
"""Abstract base class for LLM conversation services."""
def __init__(self):
self.llm = Ollama(
model="llama3.2",
temperature=0.7,
top_k=50,
top_p=0.9,
repeat_penalty=1.1,
num_ctx=4096
)
self.output_parser = StrOutputParser()
@abstractmethod
def generate_response(self, conversation: Conversation, query: str, **kwargs):
"""Generate a response to a query within a conversation context."""
pass
def _format_history(self, conversation: Conversation) -> str:
"""Format conversation history for the prompt."""
prompts = Prompt.objects.filter(conversation=conversation).order_by('created_at')
return "\n".join(
f"{'User' if prompt.is_user else 'AI'}: {prompt.text}"
for prompt in prompts
)
class SyncLLMService(LLMService):
"""Synchronous LLM conversation service."""
def __init__(self):
super().__init__()
self._setup_chain()
def _setup_chain(self):
"""Setup the conversation chain."""
template = """Continue the conversation based on the following history:
{history}
Latest message: {query}
Response:"""
self.prompt = ChatPromptTemplate.from_template(template)
self.conversation_chain = (
{
"history": lambda x: self._format_history(x["conversation"]),
"query": lambda x: x["query"]
}
| self.prompt
| self.llm
| self.output_parser
)
def generate_response(self, conversation: Conversation, query: str, **kwargs) -> Generator[str, None, None]:
"""Generate response with streaming support."""
chain_input = {
"query": query,
"conversation": conversation
}
for chunk in self.conversation_chain.stream(chain_input):
yield chunk
class AsyncLLMService(LLMService):
"""Asynchronous LLM conversation service."""
def __init__(self):
super().__init__()
self._setup_chain()
def _setup_chain(self):
"""Setup the conversation chain."""
template = """Continue this conversation while maintaining context by providing a single helpful response.
Current context: {context}
Last 3 messages:
{recent_history}
Latest message: {query}
Instructions:
- Carefully maintain all established context
- If referencing previous elements (like stories), preserve all details
- When asked to modify something, identify what's being modified
Response:"""
self.prompt = ChatPromptTemplate.from_template(template)
self.conversation_chain = (
{
"context": lambda x: self._format_history(x["conversation"]),
"recent_history": lambda x: self._get_recent_messages(x["conversation"]),
"query": lambda x: x["query"]
}
| self.prompt
| self.llm
| self.output_parser
)
async def _format_history(self, conversation: Conversation) -> str:
"""Async version of format conversation history."""
prompts = await Prompt.objects.filter(conversation=conversation).order_by('created_at').alist()
return "\n".join(
f"{'User' if prompt.is_user else 'AI'}: {prompt.text}"
for prompt in prompts
)
async def _get_recent_messages(self, conversation: Conversation) -> str:
"""Async version of format conversation history."""
prompts = await Prompt.objects.filter(conversation=conversation).order_by('created_at').alist()[-3:]
return "\n".join(
f"{'User' if prompt.is_user else 'AI'}: {prompt.text}"
for prompt in prompts
)
async def generate_response(self, conversation: Conversation, query: str, **kwargs) -> AsyncGenerator[str, None]:
"""Generate response with async streaming support."""
chain_input = {
"query": query,
"conversation": conversation
}
async for chunk in self.conversation_chain.astream(chain_input):
yield chunk

View File

@@ -0,0 +1,79 @@
from enum import Enum, auto
from typing import Dict, Any
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.llms import Ollama
class ModerationLabel(Enum):
NSFW = auto()
FINE = auto()
class ModerationClassifier:
"""
Classifies prompts as NSFW or FINE (safe) content.
"""
def __init__(self):
self.llm = Ollama(
model="llama3.2",
temperature=0.1, # Very low for strict moderation
top_k=10,
num_ctx=2048
)
self.moderation_prompt = ChatPromptTemplate.from_messages([
("system", """You are a strict content moderator. Classify the following prompt as either NSFW or FINE.
NSFW includes:
- Sexual content
- Violence/gore
- Hate speech
- Illegal activities
- Harassment
- Graphic/disturbing content
FINE includes:
- Safe for work topics
- General conversation
- Professional inquiries
- Creative requests (non-explicit)
- Technical questions
Examples:
- "How to make a bomb" → NSFW
- "Write a love poem" → FINE
- "Explicit sex scene" → NSFW
- "Python tutorial" → FINE
Return ONLY "NSFW" or "FINE", nothing else."""),
("human", "{prompt}")
])
self.chain = self.moderation_prompt | self.llm
async def classify_async(self, prompt: str) -> ModerationLabel:
"""Asynchronous classification"""
try:
response = (await self.chain.ainvoke({"prompt": prompt})).strip().upper()
return self._parse_response(response)
except Exception as e:
print(f"Moderation error: {e}")
return ModerationLabel.NSFW # Fail-safe to NSFW
def classify(self, prompt: str) -> ModerationLabel:
"""Synchronous classification"""
try:
response = self.chain.invoke({"prompt": prompt}).strip().upper()
return self._parse_response(response)
except Exception as e:
print(f"Moderation error: {e}")
return ModerationLabel.NSFW # Fail-safe to NSFW
def _parse_response(self, response: str) -> ModerationLabel:
"""Convert string response to ModerationLabel enum"""
if "NSFW" in response:
return ModerationLabel.NSFW
return ModerationLabel.FINE # Default to FINE if unclear
# Singleton instance
moderation_classifier = ModerationClassifier()

View File

@@ -0,0 +1,100 @@
from enum import Enum, auto
from typing import Dict, Any
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.llms import Ollama
class PromptType(Enum):
GENERAL_CHAT = auto()
RAG = auto()
IMAGE_GENERATION = auto()
UNKNOWN = auto()
class PromptClassifier:
"""
Classifies user prompts to determine which service should handle them.
"""
def __init__(self):
self.llm = Ollama(
model="llama3",
temperature=0.3, # Lower temp for more deterministic classification
top_k=20,
top_p=0.9,
num_ctx=4096
)
self.classification_prompt = ChatPromptTemplate.from_messages([
("system",
"""You are a precision prompt classifier. Strictly categorize prompts into:
1. GENERAL_CHAT - Casual conversation, personal questions, or non-specific inquiries
2. RAG - ONLY when explicitly requesting document/search-based knowledge
3. IMAGE_GENERATION - Specific requests to create/modify images
4. UNKNOWN - If none of the above fit
1. IMAGE_GENERATION - ONLY if:
- Explicitly contains: "generate/create/draw/make an image/picture/photo/art/illustration"
- Requests visual content creation
- Example: "Make a picture of a castle" → IMAGE_GENERATION
2. RAG - ONLY if:
- Explicitly mentions documents/files/data
- Uses search terms: "find/search/lookup in [source]"
- Example: "What does contracts.pdf say?" → RAG
3. GENERAL_CHAT - DEFAULT category when:
- Doesn't meet above criteria
- Conversational/general knowledge
- Uncertain cases
- Example: "Tell me a joke" → GENERAL_CHAT
Examples:
[Definitely RAG]
- "What does the uploaded PDF say about quarterly results?"
- "Search our documents for the 2023 marketing strategy"
- "Find the contract clause about termination"
[Definitely GENERAL_CHAT]
- "How does photosynthesis work?" (General knowledge)
- "Tell me a joke"
- "What's your opinion on AI?"
[Borderline → GENERAL_CHAT]
- "What's our company policy on X?" (No doc reference → general)
- "Explain quantum computing" (General knowledge)
- "Summarize the meeting" (No doc reference)
Return ONLY the label, no explanations."""),
("human", "{prompt}")
])
self.chain = self.classification_prompt | self.llm
async def classify_async(self, prompt: str) -> PromptType:
"""Asynchronously classify the prompt"""
try:
response = await self.chain.ainvoke({"prompt": prompt})
return self._parse_response(response.strip())
except Exception as e:
print(f"Classification error: {e}")
return PromptType.UNKNOWN
def classify(self, prompt: str) -> PromptType:
"""Synchronously classify the prompt"""
try:
response = self.chain.invoke({"prompt": prompt})
return self._parse_response(response.strip())
except Exception as e:
print(f"Classification error: {e}")
return PromptType.UNKNOWN
def _parse_response(self, response: str) -> PromptType:
"""Convert string response to PromptType enum"""
response = response.upper()
for prompt_type in PromptType:
if prompt_type.name in response:
return prompt_type
return PromptType.UNKNOWN
# Singleton instance for easy access
prompt_classifier = PromptClassifier()

View File

@@ -0,0 +1,378 @@
import os
from abc import ABC, abstractmethod
from typing import List, Dict, Any, AsyncGenerator, Generator, Optional
from channels.db import database_sync_to_async
from langchain_community.embeddings import OllamaEmbeddings
from langchain_community.llms import Ollama
from langchain_community.vectorstores import Chroma
from langchain_core.documents import Document as LangDocument
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import (
PyPDFLoader,
Docx2txtLoader,
TextLoader,
UnstructuredFileLoader
)
from django.core.files.uploadedfile import UploadedFile
from chat_backend.models import Conversation, Prompt, DocumentWorkspace, Document
from pathlib import Path
@database_sync_to_async
def get_documents(workspace: DocumentWorkspace | None = None):
if workspace:
return [doc for doc in Document.objects.filter(workspace=workspace)]
else:
return [doc for doc in Document.objects.all()]
class RAGService(ABC):
"""Abstract base class for RAG services."""
_instance = None
def __new__(cls):
if cls._instance is None:
cls._instance = super().__new__(cls)
cls._instance.__init__()
return cls._instance
def __init__(self):
self.embedding_model = OllamaEmbeddings(model="llama3.2")
self.llm = Ollama(
model="llama3.2",
temperature=0.7,
top_k=50,
top_p=0.9,
repeat_penalty=1.1,
num_ctx=4096
)
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200
)
self.vector_store = self._initialize_vector_store()
# Supported file types and their loaders
self.loader_mapping = {
'.pdf': PyPDFLoader,
'.docx': Docx2txtLoader,
'.txt': TextLoader,
# Fallback for other file types
'*': UnstructuredFileLoader,
}
def _initialize_vector_store(self) -> Chroma:
"""Initialize and return the Chroma vector store."""
persist_directory=f"./chroma_db/"
vector_store = Chroma(
embedding_function=self.embedding_model,
persist_directory=persist_directory
)
return vector_store
def clear_vector_store(self):
"""Clear all vectors from the store"""
self.vector_store.delete_collection()
self.vector_store = self._initialize_vector_store()
def _prepare_documents(self, documents: List[Document]) -> List[Document]:
"""Process documents for ingestion into vector store."""
docs = []
for doc in documents:
print(f"Processing: {doc.file.name}")
loader_class = self._get_file_loader( doc.file.name)
loader = loader_class(doc.file)
chunks = self._load_and_split_documents(doc.file.path)
if chunks:
self.vector_store.add_documents(chunks)
self.vector_store.persist()
def ingest_documents(self, workspace: DocumentWorkspace | None = None) -> None:
"""Ingest documents from a workspace into the vector store."""
print(f"Getting the Document via the workspace: {workspace}")
if workspace:
documents = [doc for doc in Document.objects.filter(workspace=workspace)]
else:
documents = [doc for doc in Document.objects.all()]
print(f"Processing the documents : {documents}")
self._prepare_documents(documents)
@abstractmethod
def generate_response(self, conversation: Conversation, query: str, **kwargs):
"""Generate a response using RAG."""
pass
@abstractmethod
def search_documents(self, query: str, workspace: Optional[DocumentWorkspace] = None, k: int = 4) -> List[Document]:
"""Search relevant documents from the vector store."""
pass
def _get_file_loader(self, file_path: str):
"""Get appropriate loader for file type"""
ext = Path(file_path).suffix.lower()
return self.loader_mapping.get(ext, self.loader_mapping['*'])
def _sanitize_filename(self, filename: str) -> str:
"""Sanitize filename for safe storage"""
return re.sub(r'[^\w\-_. ]', '_', filename)
def _save_uploaded_file(self, uploaded_file: UploadedFile, save_dir: str) -> str:
"""Save uploaded file to disk"""
os.makedirs(save_dir, exist_ok=True)
sanitized_name = self._sanitize_filename(uploaded_file.name)
file_path = os.path.join(save_dir, sanitized_name)
with open(file_path, 'wb+') as destination:
for chunk in uploaded_file.chunks():
destination.write(chunk)
return file_path
def _load_and_split_documents(self, file_path: str, metadata: dict = None) -> List[Document]:
"""Load and split documents from file"""
loader_class = self._get_file_loader(file_path)
loader = loader_class(file_path)
docs = loader.load()
if metadata:
for doc in docs:
doc.metadata.update(metadata)
return self.text_splitter.split_documents(docs)
def add_files_to_store(
self,
file_tupls: List[UploadedFile], # (file_path, name,workspace_id)
workspace_id: str,
source: str = "upload",
save_dir: str = "data/uploads"
) -> Dict[str, Any]:
"""
Process and add uploaded files to vector store
Args:
files: List of Django UploadedFile objects
workspace_id: ID of the workspace these belong to
source: Source identifier for documents
save_dir: Directory to save uploaded files
Returns:
Dictionary with processing results
"""
results = {
'total_added': 0,
'failed_files': [],
'processed_files': []
}
for file_tuple in file_tupls:
try:
# Save file to disk
# Prepare metadata
metadata = {
'source': file_tuple[1],
'workspace_id': file_tuple[2],
'original_filename': file_tuple[1],
'file_path': file_tuple[0],
}
# Load and split documents
docs = self._load_and_split_documents(file_path, metadata)
# Add to vector store
if docs:
self.vector_store.add_documents(docs)
results['total_added'] += len(docs)
results['processed_files'].append({
'filename': file_tuple[1],
'document_count': len(docs)
})
except Exception as e:
results['failed_files'].append({
'filename': file_tuple[1],
'error': str(e)
})
continue
# Persist changes
self.vector_store.persist()
return results
class SyncRAGService(RAGService):
"""Synchronous RAG service implementation."""
def __init__(self):
super().__init__()
self._setup_chain()
def _setup_chain(self):
"""Setup the RAG chain."""
template = """Answer the question based only on the following context:
{context}
Conversation history:
{history}
Question: {question}
"""
self.prompt = ChatPromptTemplate.from_template(template)
self.rag_chain = (
{
"context": self._retriever_with_history,
"history": lambda x: self._format_history(x["conversation"]),
"question": lambda x: x["query"]
}
| self.prompt
| self.llm
| StrOutputParser()
)
def _format_history(self, conversation: Conversation) -> str:
"""Format conversation history for the prompt."""
prompts = Prompt.objects.filter(conversation=conversation).order_by('created_at')
return "\n".join(
f"{'User' if prompt.is_user else 'AI'}: {prompt.text}"
for prompt in prompts
)
def _retriever_with_history(self, input_dict: Dict[str, Any]) -> str:
"""Retrieve documents considering conversation history."""
query = input_dict["query"]
conversation = input_dict["conversation"]
# You could enhance this to consider historical context in retrieval
relevant_docs = self.search_documents(query, conversation.workspace)
if not relevant_docs:
print("didn't find any relevant docs")
return relevant_docs
else:
return relevant_docs
def search_documents(self, query: str, workspace: Optional[DocumentWorkspace] = None, k: int = 4) -> List[Document]:
"""Search relevant documents from the vector store."""
filter_dict = {}
if workspace:
filter_dict["workspace_id"] = workspace.id
print(f"search_kwargs: {search_kwargs}")
retriever = self.vector_store.as_retriever(
search_type="similarity",
search_kwargs={
"k": k,
"filter": filter_dict if filter_dict else None
}
)
return retriever.get_relevant_documents(query)
def generate_response(self, conversation: Conversation, query: str, **kwargs) -> Generator[str, None, None]:
"""Generate response with streaming support."""
chain_input = {
"query": query,
"conversation": conversation
}
for chunk in self.rag_chain.stream(chain_input):
yield chunk
class AsyncRAGService(RAGService):
"""Asynchronous RAG service implementation."""
def __init__(self):
super().__init__()
self._setup_chain()
def _setup_chain(self):
"""Setup the RAG chain."""
template = """Answer the question based only on the following context:
{context}
Conversation history:
{history}
Question: {question}
"""
self.prompt = ChatPromptTemplate.from_template(template)
self.rag_chain = (
{
"context": self._retriever_with_history,
"history": lambda x: self._format_history(x["conversation"]),
"question": lambda x: x["query"]
}
| self.prompt
| self.llm
| StrOutputParser()
)
async def _format_history(self, conversation: Conversation) -> str:
"""Format conversation history for the prompt."""
prompts = await Prompt.objects.filter(conversation=conversation).order_by('created_at').alist()
print(f"prompts that we are seeding with are: {prompts}")
return "\n".join(
f"{'User' if prompt.is_user else 'AI'}: {prompt.text}"
for prompt in prompts
)
async def _retriever_with_history(self, input_dict: Dict[str, Any]) -> str:
"""Retrieve documents considering conversation history."""
print(f"Retrieving history with input: {input_dict}")
query = input_dict["query"]
conversation = input_dict["conversation"]
workspace = input_dict["workspace"]
# You could enhance this to consider historical context in retrieval
docs= await self.search_documents(query, workspace)
if not docs:
print("Didn't find any relevant docs")
print("\n\n".join(doc.page_content for doc in docs))
return "\n\n".join(doc.page_content for doc in docs)
async def search_documents(self, query: str, workspace: Optional[DocumentWorkspace] = None, k: int = 4) -> List[Document]:
"""Search relevant documents from the vector store."""
filter_dict = {}
print(f"Do we have a workspace: {workspace}")
if workspace:
filter_dict["workspace_id"] = workspace.id
search_kwargs={
"k": k,
"filter": filter_dict if filter_dict else None
}
print(f"search_kwargs: {search_kwargs}")
retriever = self.vector_store.as_retriever(
search_type="mmr",
search_kwargs={
"k": k,
"filter": filter_dict if filter_dict else None
}
)
return await retriever.aget_relevant_documents(query)
async def generate_response(self, conversation: Conversation, query: str, workspace: DocumentWorkspace, **kwargs) -> AsyncGenerator[str, None]:
"""Generate response with streaming support."""
chain_input = {
"query": query,
"conversation": conversation,
"workspace": workspace,
}
async for chunk in self.rag_chain.astream(chain_input):
yield chunk

View File

@@ -0,0 +1,219 @@
import os
from unittest import TestCase, mock
from unittest.mock import MagicMock, patch, AsyncMock
from typing import List, Dict, Any
from django.test import TestCase as DjangoTestCase
from chat_backend.services.rag_services import RAGService, SyncRAGService, AsyncRAGService
from chat_backend.models import Conversation, Prompt, DocumentWorkspace, Document
class TestRAGService(TestCase):
def setUp(self):
self.rag_service = RAGService()
self.rag_service.vector_store = MagicMock()
self.rag_service.embedding_model = MagicMock()
self.rag_service.text_splitter = MagicMock()
def test_initialize_vector_store(self):
with patch('os.path.exists', return_value=False), \
patch('os.makedirs') as mock_makedirs, \
patch('langchain_community.vectorstores.Chroma') as mock_chroma:
# Reset the vector store to test initialization
self.rag_service.vector_store = None
result = self.rag_service._initialize_vector_store()
mock_makedirs.assert_called_once_with("chroma_db")
mock_chroma.assert_called_once_with(
embedding_function=self.rag_service.embedding_model,
persist_directory="chroma_db"
)
self.assertIsNotNone(result)
def test_prepare_documents(self):
mock_doc1 = MagicMock(spec=Document)
mock_doc1.content = "Test content"
mock_doc1.source = "test_source"
mock_doc1.workspace = MagicMock()
mock_doc1.workspace.id = 1
mock_doc1.id = 1
self.rag_service.text_splitter.split_text.return_value = ["chunk1", "chunk2"]
result = self.rag_service._prepare_documents([mock_doc1])
self.assertEqual(len(result), 2)
self.rag_service.text_splitter.split_text.assert_called_once_with("Test content")
self.assertEqual(result[0].page_content, "chunk1")
self.assertEqual(result[0].metadata["source"], "test_source")
def test_ingest_documents(self):
mock_workspace = MagicMock()
mock_document = MagicMock()
mock_documents = [mock_document]
with patch('services.rag_services.Document.objects.filter', return_value=mock_documents):
self.rag_service._prepare_documents = MagicMock(return_value=["processed_doc"])
self.rag_service.ingest_documents(mock_workspace)
self.rag_service.vector_store.add_documents.assert_called_once_with(["processed_doc"])
self.rag_service.vector_store.persist.assert_called_once()
class TestSyncRAGService(DjangoTestCase):
def setUp(self):
self.sync_service = SyncRAGService()
self.sync_service.vector_store = MagicMock()
self.sync_service.llm = MagicMock()
self.sync_service.rag_chain = MagicMock()
self.mock_conversation = MagicMock(spec=Conversation)
self.mock_conversation.workspace = MagicMock()
self.mock_prompt1 = MagicMock(spec=Prompt)
self.mock_prompt1.is_user = True
self.mock_prompt1.text = "User question"
self.mock_prompt1.created_at = "2023-01-01"
self.mock_prompt2 = MagicMock(spec=Prompt)
self.mock_prompt2.is_user = False
self.mock_prompt2.text = "AI response"
self.mock_prompt2.created_at = "2023-01-02"
def test_format_history(self):
with patch('services.rag_services.Prompt.objects.filter') as mock_filter:
mock_filter.return_value.order_by.return_value = [self.mock_prompt1, self.mock_prompt2]
result = self.sync_service._format_history(self.mock_conversation)
expected = "User: User question\nAI: AI response"
self.assertEqual(result, expected)
mock_filter.assert_called_once_with(conversation=self.mock_conversation)
def test_retriever_with_history(self):
input_dict = {
"query": "test query",
"conversation": self.mock_conversation
}
self.sync_service.search_documents = MagicMock(return_value=["doc1", "doc2"])
result = self.sync_service._retriever_with_history(input_dict)
self.sync_service.search_documents.assert_called_once_with(
"test query",
self.mock_conversation.workspace
)
self.assertEqual(result, ["doc1", "doc2"])
def test_search_documents(self):
mock_retriever = MagicMock()
mock_retriever.get_relevant_documents.return_value = ["doc1", "doc2"]
self.sync_service.vector_store.as_retriever.return_value = mock_retriever
result = self.sync_service.search_documents("test query", self.mock_conversation.workspace)
self.sync_service.vector_store.as_retriever.assert_called_once_with(
search_type="similarity",
search_kwargs={
"k": 4,
"filter": {"workspace_id": self.mock_conversation.workspace.id}
}
)
self.assertEqual(result, ["doc1", "doc2"])
def test_generate_response(self):
chain_input = {
"query": "test query",
"conversation": self.mock_conversation
}
mock_stream = ["chunk1", "chunk2", "chunk3"]
self.sync_service.rag_chain.stream.return_value = mock_stream
result = list(self.sync_service.generate_response(self.mock_conversation, "test query"))
self.sync_service.rag_chain.stream.assert_called_once_with(chain_input)
self.assertEqual(result, mock_stream)
class TestAsyncRAGService(DjangoTestCase):
def setUp(self):
self.async_service = AsyncRAGService()
self.async_service.vector_store = MagicMock()
self.async_service.llm = MagicMock()
self.async_service.rag_chain = AsyncMock()
self.mock_conversation = MagicMock(spec=Conversation)
self.mock_conversation.workspace = MagicMock()
self.mock_prompt1 = MagicMock(spec=Prompt)
self.mock_prompt1.is_user = True
self.mock_prompt1.text = "User question"
self.mock_prompt1.created_at = "2023-01-01"
self.mock_prompt2 = MagicMock(spec=Prompt)
self.mock_prompt2.is_user = False
self.mock_prompt2.text = "AI response"
self.mock_prompt2.created_at = "2023-01-02"
async def test_format_history(self):
mock_manager = AsyncMock()
mock_manager.order_by.return_value.alist.return_value = [self.mock_prompt1, self.mock_prompt2]
with patch('services.rag_services.Prompt.objects.filter', return_value=mock_manager):
result = await self.async_service._format_history(self.mock_conversation)
expected = "User: User question\nAI: AI response"
self.assertEqual(result, expected)
mock_manager.order_by.assert_called_once_with('created_at')
async def test_retriever_with_history(self):
input_dict = {
"query": "test query",
"conversation": self.mock_conversation
}
self.async_service.search_documents = AsyncMock(return_value=["doc1", "doc2"])
result = await self.async_service._retriever_with_history(input_dict)
self.async_service.search_documents.assert_awaited_once_with(
"test query",
self.mock_conversation.workspace
)
self.assertEqual(result, ["doc1", "doc2"])
async def test_search_documents(self):
mock_retriever = AsyncMock()
mock_retriever.aget_relevant_documents.return_value = ["doc1", "doc2"]
self.async_service.vector_store.as_retriever.return_value = mock_retriever
result = await self.async_service.search_documents("test query", self.mock_conversation.workspace)
self.async_service.vector_store.as_retriever.assert_called_once_with(
search_type="similarity",
search_kwargs={
"k": 4,
"filter": {"workspace_id": self.mock_conversation.workspace.id}
}
)
self.assertEqual(result, ["doc1", "doc2"])
async def test_generate_response(self):
chain_input = {
"query": "test query",
"conversation": self.mock_conversation
}
mock_stream = ["chunk1", "chunk2", "chunk3"]
self.async_service.rag_chain.astream.return_value = mock_stream
chunks = []
async for chunk in self.async_service.generate_response(self.mock_conversation, "test query"):
chunks.append(chunk)
self.async_service.rag_chain.astream.assert_awaited_once_with(chain_input)
self.assertEqual(chunks, mock_stream)

View File

@@ -0,0 +1,67 @@
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.llms import Ollama
from typing import Optional
class TitleGenerator:
"""
Generates short, descriptive titles for conversations based on the first prompt.
"""
def __init__(self):
self.llm = Ollama(
model="llama3",
temperature=0.5, # Slightly creative but not too random
top_k=20,
num_ctx=2048 # Shorter context needed for titles
)
self.title_prompt = ChatPromptTemplate.from_messages([
("system", """You are a conversation title generator. Create a very short (2-5 word) title based on the user's first message.
Rules:
1. Keep it extremely concise
2. Capture the main topic or intent
3. Use title case
4. No quotes or punctuation
5. Never exceed 5 words
Examples:
- "What's the weather today?""Weather Inquiry"
- "Explain quantum computing""Quantum Computing Explanation"
- "Generate an image of a dragon""Dragon Image Generation"
- "Find our company's privacy policy""Privacy Policy Search"
Return ONLY the title, nothing else."""),
("human", "{prompt}")
])
self.chain = self.title_prompt | self.llm
async def generate_async(self, prompt: str) -> str:
"""Generate title asynchronously"""
try:
response = await self.chain.ainvoke({"prompt": prompt})
return self._clean_response(response)
except Exception as e:
print(f"Title generation error: {e}")
return "Conversation"
def generate(self, prompt: str) -> str:
"""Generate title synchronously"""
try:
response = self.chain.invoke({"prompt": prompt})
return self._clean_response(response)
except Exception as e:
print(f"Title generation error: {e}")
return "Conversation"
def _clean_response(self, response: str) -> str:
"""Clean and format the LLM response"""
# Remove any quotes or punctuation
response = response.strip('"\'.!? \n\t')
# Ensure title case and trim
return response.title()[:50] # Hard limit for safety
# Singleton instance
title_generator = TitleGenerator()

View File

@@ -0,0 +1,18 @@
from django.db.models.signals import post_save, post_delete
from django.dispatch import receiver
from chat_backend.models import Document
from .services.rag_services import AsyncRAGService
@receiver(post_save, sender=Document)
def update_vector_on_save(sender, instance, **kwargs):
"""Update vector store when documents are saved"""
if kwargs.get('created', False):
rag_service = AsyncRAGService()
rag_service.ingest_documents()
@receiver(post_delete, sender=Document)
def delete_vector_on_remove(sender, instance, **kwargs):
"""Handle document deletion by re-indexing the whole workspace"""
rag_service = AsyncRAGService()
rag_service.ingest_documents()

View File

@@ -0,0 +1,97 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Reset Password for Chat by AI ML Operations, LLC</title>
<style>
/* Basic reset for email clients */
body, table, td, a {
-webkit-text-size-adjust: 100%;
-ms-text-size-adjust: 100%;
}
table, td {
mso-table-lspace: 0pt;
mso-table-rspace: 0pt;
}
img {
border: 0;
height: auto;
line-height: 100%;
outline: none;
text-decoration: none;
-ms-interpolation-mode: bicubic;
}
body {
margin: 0;
padding: 0;
font-family: Arial, sans-serif;
background-color: #f4f4f4;
}
.email-container {
max-width: 600px;
margin: 0 auto;
background-color: #ffffff;
border: 1px solid #dddddd;
}
.header {
background-color: #007BFF;
color: #ffffff;
padding: 20px;
text-align: center;
}
.content {
padding: 20px;
color: #333333;
}
.footer {
background-color: #f4f4f4;
color: #777777;
text-align: center;
padding: 10px;
font-size: 12px;
}
.feedback-title {
font-size: 18px;
font-weight: bold;
margin-bottom: 10px;
}
.feedback-text {
font-size: 14px;
line-height: 1.5;
}
</style>
</head>
<body>
<table role="presentation" width="100%" cellspacing="0" cellpadding="0" border="0" align="center">
<tr>
<td>
<!-- Email Container -->
<div class="email-container">
<!-- Header -->
<div class="header">
<h1>Password Reset for AI ML Operations, LLC Chat Services</h1>
</div>
<!-- Content -->
<div class="content">
<p>Hello,</p>
<p>There has been a request for a password reset. If you didn't requets this, please email ryan@aimloperations.com</p>
<p>Please click <a href="{{ url }}">link</a> to set your password.</p>
<p>Once you have set your password go <a href="https://chat.aimloperations.com">here</a> to get started.</p>
<p>Thank you.</p>
</div>
<!-- Footer -->
<div class="footer">
<p>This is an automated message. Please do not reply to this email.</p>
<p>&copy; 2023-2025 AI ML Operations, LLC. All rights reserved.</p>
</div>
</div>
</td>
</tr>
</table>
</body>
</html>

View File

@@ -0,0 +1,3 @@
Password Reset for AI ML Operations, LLC Chat Services
"Password reset for chat.aimloperations.com. Please use {{ url }} to set your password"

View File

@@ -1,3 +1,210 @@
from django.test import TestCase from django.test import TestCase
# Create your tests here. # Create your tests here.
from django.test import TestCase, Client
from django.urls import reverse
from django.contrib.auth.models import User
from rest_framework.test import APIClient, APITestCase
from rest_framework import status
from .models import DocumentWorkspace, Document, Company
from django.contrib.auth import get_user_model
import tempfile
from django.core.files.uploadedfile import SimpleUploadedFile
# Minimal valid PDF bytes
VALID_PDF_BYTES = (
b'%PDF-1.3\n'
b'1 0 obj\n'
b'<< /Type /Catalog /Pages 2 0 R >>\n'
b'endobj\n'
b'2 0 obj\n'
b'<< /Type /Pages /Kids [3 0 R] /Count 1 >>\n'
b'endobj\n'
b'3 0 obj\n'
b'<< /Type /Page /Parent 2 0 R /Resources << >> /MediaBox [0 0 612 792] /Contents 4 0 R >>\n'
b'endobj\n'
b'4 0 obj\n'
b'<< /Length 44 >>\n'
b'stream\n'
b'BT /F1 12 Tf 72 720 Td (Test PDF) Tj ET\n'
b'endstream\n'
b'endobj\n'
b'xref\n'
b'0 5\n'
b'0000000000 65535 f \n'
b'0000000009 00000 n \n'
b'0000000058 00000 n \n'
b'0000000117 00000 n \n'
b'0000000223 00000 n \n'
b'trailer\n'
b'<< /Size 5 /Root 1 0 R >>\n'
b'startxref\n'
b'317\n'
b'%%EOF'
)
class DocumentWorkspaceViewsTestCase(APITestCase):
def setUp(self):
self.company = Company.objects.create(
name="test",
state="IL",
zipcode="60189",
address="1968 Greensboro Dr"
)
self.user = get_user_model().objects.create_user(
company=self.company,
username='testuser',
password='testpass123',
email="test@test.com",
)
self.client = APIClient()
self.client.force_authenticate(user=self.user)
self.workspace = DocumentWorkspace.objects.create(
company = self.user.company,
name='Test Workspace'
)
def test_list_workspaces(self):
url = reverse('document_workspaces')
response = self.client.get(url)
self.assertEqual(response.status_code, status.HTTP_200_OK)
self.assertEqual(len(response.data), 1)
self.assertEqual(response.data[0]['name'], 'Test Workspace')
def test_create_workspace(self):
url = reverse('document_workspaces')
data = {
'name': 'New Workspace'
}
response = self.client.post(url, data, format='json')
self.assertEqual(response.status_code, status.HTTP_201_CREATED)
self.assertEqual(DocumentWorkspace.objects.count(), 2)
def test_retrieve_workspace(self):
url = reverse('document_workspaces')
response = self.client.get(url)
self.assertEqual(response.status_code, status.HTTP_200_OK)
self.assertEqual(response.data[0]['name'], 'Test Workspace')
# def test_update_workspace(self):
# url = reverse('document_workspaces')
# data = {
# 'name': 'Updated Workspace'
# }
# response = self.client.post(url, data, format='json')
# self.assertEqual(response.status_code, status.HTTP_201_CREATED)
# self.workspace.refresh_from_db()
# self.assertEqual(self.workspace.name, 'Updated Workspace')
# def test_delete_workspace(self):
# url = reverse('document_workspaces', args=[self.workspace.id])
# response = self.client.delete(url)
# self.assertEqual(response.status_code, status.HTTP_204_NO_CONTENT)
# self.assertEqual(DocumentWorkspace.objects.count(), 0)
class DocumentViewsTestCase(APITestCase):
def setUp(self):
self.company = Company.objects.create(
name="test",
state="IL",
zipcode="60189",
address="1968 Greensboro Dr"
)
self.user = get_user_model().objects.create_user(
company=self.company,
username='testuser',
password='testpass123',
email="test@test.com",
)
self.client = APIClient()
self.client.force_authenticate(user=self.user)
self.workspace = DocumentWorkspace.objects.create(
company=self.user.company,
name='Test Workspace'
)
# Create a test file
self.test_file = SimpleUploadedFile(
"test.pdf",
VALID_PDF_BYTES,
content_type="application/pdf"
)
def test_upload_document(self):
url = reverse('documents')
data = {
'file': self.test_file
}
response = self.client.post(url, data, format='multipart')
self.assertEqual(response.status_code, status.HTTP_201_CREATED)
self.assertEqual(Document.objects.count(), 1)
document = Document.objects.first()
self.assertEqual(document.workspace.id, self.workspace.id)
self.assertTrue(document.processed) # Should be False initially
def test_list_documents(self):
# First create a document
Document.objects.create(
workspace=self.workspace,
file=self.test_file
)
url = reverse('documents')
response = self.client.get(url)
self.assertEqual(response.status_code, status.HTTP_200_OK)
self.assertEqual(len(response.data), 1)
self.assertIn('test', response.data[0]['file'])
self.assertIn('pdf', response.data[0]['file'])
# def test_delete_document(self):
# document = Document.objects.create(
# workspace=self.workspace,
# file=self.test_file
# )
# url = reverse('document-detail', args=[document.id])
# response = self.client.delete(url)
# self.assertEqual(response.status_code, status.HTTP_204_NO_CONTENT)
# self.assertEqual(Document.objects.count(), 0)
def test_upload_invalid_file(self):
url = reverse('documents')
data = {
'file': 'not a file'
}
response = self.client.post(url, data, format='multipart')
self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST)
def test_access_other_users_documents(self):
# Create another user
other_company = Company.objects.create(
name="test2",
state="IL",
zipcode="60189",
address="1968 Greensboro Dr"
)
other_user = get_user_model().objects.create_user(
company=other_company,
username='otheruser',
password='otherpass123',
email="testing2@test.com"
)
other_workspace = DocumentWorkspace.objects.create(
company = other_user.company,
name='Other Workspace'
)
other_document = Document.objects.create(
workspace=other_workspace,
file=self.test_file
)
# Try to access the other user's document
url = reverse('documents_details', kwargs={"document_id":other_document.id})
response = self.client.get(url)
self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND)

View File

@@ -14,26 +14,41 @@ from .views import (
ConversationDetailView, ConversationDetailView,
CompanyUsersView, CompanyUsersView,
SetUserPassword, SetUserPassword,
ResetUserPassword,
ConversationPreferences, ConversationPreferences,
UserPromptAnalytics, UserPromptAnalytics,
UserConversationAnalytics, UserConversationAnalytics,
CompanyUsageAnalytics, CompanyUsageAnalytics,
AdminAnalytics AdminAnalytics,
reset_password,
DocumentWorkspaceView,
DocumentUploadView,
DocumentDetailView
) )
from rest_framework.routers import DefaultRouter
urlpatterns = [ urlpatterns = [
path("token/obtain/", CustomObtainTokenView.as_view(), name="token_create"), path("token/obtain/", CustomObtainTokenView.as_view(), name="token_create"),
path("token/refresh/", jwt_views.TokenRefreshView.as_view(), name="token_refresh"), path("token/refresh/", jwt_views.TokenRefreshView.as_view(), name="token_refresh"),
path("user/create/", CustomUserCreate.as_view(), name="create_user"), path("user/create/", CustomUserCreate.as_view(), name="create_user"),
path("user/invite/", CustomUserInvite.as_view(), name="invite_user"), path("user/invite/", CustomUserInvite.as_view(), name="invite_user"),
path("user/set_password/<slug:slug>/", SetUserPassword.as_view(), name="set_password"), path("user/reset_password/", reset_password, name="reset_password"),
path(
"user/set_password/<slug:slug>/", SetUserPassword.as_view(), name="set_password"
),
path( path(
"blacklist/", "blacklist/",
LogoutAndBlacklistRefreshTokenForUserView.as_view(), LogoutAndBlacklistRefreshTokenForUserView.as_view(),
name="blacklist", name="blacklist",
), ),
path("user/get/", CustomUserGet.as_view(), name="get_user"), path("user/get/", CustomUserGet.as_view(), name="get_user"),
path("user/acknowledge_tos/", AcknowledgeTermsOfService.as_view(), name="acknowledge_tos"), path(
"user/acknowledge_tos/",
AcknowledgeTermsOfService.as_view(),
name="acknowledge_tos",
),
path("company_users", CompanyUsersView.as_view(), name="company_users"), path("company_users", CompanyUsersView.as_view(), name="company_users"),
path("user/is_authenticated/", is_authenticated, name="is_authenticated"), path("user/is_authenticated/", is_authenticated, name="is_authenticated"),
path("announcment/get/", AnnouncmentView.as_view(), name="get_announcments"), path("announcment/get/", AnnouncmentView.as_view(), name="get_announcments"),
@@ -44,9 +59,32 @@ urlpatterns = [
ConversationDetailView.as_view(), ConversationDetailView.as_view(),
name="conversation_details", name="conversation_details",
), ),
path("conversation_preferences", ConversationPreferences.as_view(), name="conversation_preferences"), path(
path("analytics/user_prompts/", UserPromptAnalytics.as_view(), name="analytics_user_prompts"), "conversation_preferences",
path("analytics/user_conversations/", UserConversationAnalytics.as_view(), name="analytics_user_conversations"), ConversationPreferences.as_view(),
path("analytics/company_usage/", CompanyUsageAnalytics.as_view(), name="analytics_company_usage"), name="conversation_preferences",
),
path(
"analytics/user_prompts/",
UserPromptAnalytics.as_view(),
name="analytics_user_prompts",
),
path(
"analytics/user_conversations/",
UserConversationAnalytics.as_view(),
name="analytics_user_conversations",
),
path(
"analytics/company_usage/",
CompanyUsageAnalytics.as_view(),
name="analytics_company_usage",
),
path("analytics/admin/", AdminAnalytics.as_view(), name="analytics_admin"), path("analytics/admin/", AdminAnalytics.as_view(), name="analytics_admin"),
# document urls
path("document_workspaces/", DocumentWorkspaceView.as_view(), name="document_workspaces"),
path("documents/", DocumentUploadView.as_view(), name="documents"),
path("documents_details/<int:document_id>", DocumentDetailView.as_view(), name="documents_details"),
] ]

View File

@@ -1,5 +1,6 @@
import datetime import datetime
def last_day_of_month(any_day): def last_day_of_month(any_day):
# The day 28 exists in every month. 4 days later, it's always next month # The day 28 exists in every month. 4 days later, it's always next month
next_month = any_day.replace(day=28) + datetime.timedelta(days=4) next_month = any_day.replace(day=28) + datetime.timedelta(days=4)

View File

@@ -11,11 +11,22 @@ from .serializers import (
CompanySerializer, CompanySerializer,
ConversationSerializer, ConversationSerializer,
PromptSerializer, PromptSerializer,
FeedbackSerializer FeedbackSerializer,
DocumentWorkspaceSerializer,
DocumentSerializer
) )
from rest_framework.views import APIView from rest_framework.views import APIView
from rest_framework.response import Response from rest_framework.response import Response
from .models import CustomUser, Announcement, Conversation, Prompt, Feedback,PromptMetric from .models import (
CustomUser,
Announcement,
Conversation,
Prompt,
Feedback,
PromptMetric,
DocumentWorkspace,
Document
)
from django.views.decorators.cache import never_cache from django.views.decorators.cache import never_cache
from django.http import JsonResponse from django.http import JsonResponse
from datetime import datetime from datetime import datetime
@@ -25,7 +36,9 @@ from channels.generic.websocket import AsyncWebsocketConsumer
from langchain_ollama.llms import OllamaLLM from langchain_ollama.llms import OllamaLLM
from langchain_core.prompts import ChatPromptTemplate from langchain_core.prompts import ChatPromptTemplate
from langchain_core.messages import HumanMessage, SystemMessage from langchain_core.messages import HumanMessage, SystemMessage
from langchain.chains import RetrievalQA
import re import re
import os
from django.conf import settings from django.conf import settings
import json import json
import base64 import base64
@@ -43,15 +56,27 @@ from django.core.files.base import ContentFile
import math import math
import datetime import datetime
import pytz import pytz
from langchain_community.embeddings import OllamaEmbeddings
from dateutil.relativedelta import relativedelta from dateutil.relativedelta import relativedelta
from django.views.decorators.csrf import csrf_exempt
from .utils import last_day_of_month from .utils import last_day_of_month
from .services.llm_service import AsyncLLMService
from .services.rag_services import AsyncRAGService
from .services.title_generator import title_generator
from .services.moderation_classifier import moderation_classifier, ModerationLabel
from .services.prompt_classifier import prompt_classifier, PromptType
CHANNEL_NAME: str = 'llm_messages' from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_ollama import ChatOllama
CHANNEL_NAME: str = "llm_messages"
MODEL_NAME: str = "llama3" MODEL_NAME: str = "llama3"
# Create your views here. # Create your views here.
class CustomObtainTokenView(TokenObtainPairView): class CustomObtainTokenView(TokenObtainPairView):
permission_classes = (permissions.AllowAny,) permission_classes = (permissions.AllowAny,)
@@ -71,80 +96,167 @@ class CustomUserCreate(APIView):
return Response(json, status=status.HTTP_201_CREATED) return Response(json, status=status.HTTP_201_CREATED)
return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)
def send_invite_email(slug, email_to_invite): def send_invite_email(slug, email_to_invite):
print("Sending invite email")
print(f"url : https://www.chat.aimloperations.com/set_password?slug={slug}") print(f"url : https://www.chat.aimloperations.com/set_password?slug={slug}")
url = f"https://www.chat.aimloperations.com/set_password?slug={slug}" url = f"https://www.chat.aimloperations.com/set_password?slug={slug}"
subject = "Welcome to AI ML Operations, LLC Chat Services" subject = "Welcome to AI ML Operations, LLC Chat Services"
from_email = "ryan@aimloperations.com" from_email = "ryan@aimloperations.com"
to = email_to_invite to = email_to_invite
d = {"url": url} d = {"url": url}
html_content = get_template(r'emails/invite_email.html').render(d) html_content = get_template(r"emails/invite_email.html").render(d)
text_content = get_template(r'emails/invite_email.txt').render(d) text_content = get_template(r"emails/invite_email.txt").render(d)
msg = EmailMultiAlternatives(subject, text_content, from_email, [to]) msg = EmailMultiAlternatives(subject, text_content, from_email, [to])
msg.attach_alternative(html_content, "text/html") msg.attach_alternative(html_content, "text/html")
msg.send(fail_silently=True) msg.send(fail_silently=True)
def send_feedback_email(feedback_obj): def send_feedback_email(feedback_obj):
print("Sending feedback email")
subject = "New Feedback for Chat by AI ML Operations, LLC" subject = "New Feedback for Chat by AI ML Operations, LLC"
from_email = "ryan@aimloperations.com" from_email = "ryan@aimloperations.com"
to = "ryan@aimloperations.com" to = "ryan@aimloperations.com"
d = {"title": feedback_obj.title, "feedback_text": feedback_obj.text} d = {"title": feedback_obj.title, "feedback_text": feedback_obj.text}
html_content = get_template(r'emails/feedback_email.html').render(d) html_content = get_template(r"emails/feedback_email.html").render(d)
text_content = get_template(r'emails/feedback_email.txt').render(d) text_content = get_template(r"emails/feedback_email.txt").render(d)
msg = EmailMultiAlternatives(subject, text_content, from_email, [to]) msg = EmailMultiAlternatives(subject, text_content, from_email, [to])
msg.attach_alternative(html_content, "text/html") msg.attach_alternative(html_content, "text/html")
msg.send(fail_silently=True) msg.send(fail_silently=True)
def send_password_reset_email(slug, email_to_invite):
print("Sending Password reset email")
url = f"https://www.chat.aimloperations.com/set_password?slug={slug}"
subject = "Password reset for Chat by AI ML Operations, LLC"
from_email = "ryan@aimloperations.com"
to = email_to_invite
d = {"url": url}
html_content = get_template(r"emails/reset_email.html").render(d)
text_content = get_template(r"emails/reset_email.txt").render(d)
msg = EmailMultiAlternatives(subject, text_content, from_email, [to])
msg.attach_alternative(html_content, "text/html")
msg.send(fail_silently=True)
class CustomUserInvite(APIView): class CustomUserInvite(APIView):
http_method_names = ['post'] http_method_names = ["post"]
def post(self, request, format="json"): def post(self, request, format="json"):
def valid_email(email_string): def valid_email(email_string):
regex = r'^[a-z0-9]+[\._]?[a-z0-9]+[@]\w+[.]\w+$' regex = r"^[a-z0-9]+[\._]?[a-z0-9]+[@]\w+[.]\w+$"
if re.match(regex, email_string): if re.match(regex, email_string):
return True return True
else: else:
return False return False
email_to_invite = request.data['email'] email_to_invite = request.data["email"]
if len(email_to_invite) == 0 or not valid_email(email_to_invite) or not request.user.is_company_manager: if (
len(email_to_invite) == 0
or not valid_email(email_to_invite)
or not request.user.is_company_manager
):
return Response(status=status.HTTP_400_BAD_REQUEST) return Response(status=status.HTTP_400_BAD_REQUEST)
# make sure there isn't a user with this email already # make sure there isn't a user with this email already
existing_users = CustomUser.objects.filter(email=email_to_invite) existing_users = CustomUser.objects.filter(email=email_to_invite)
if len(existing_users) > 0: if len(existing_users) > 0:
return Response(status=status.HTTP_400_BAD_REQUEST) return Response(status=status.HTTP_400_BAD_REQUEST)
# create the object and send the email # create the object and send the email
user = CustomUser.objects.create(email=email_to_invite, username=email_to_invite, company=request.user.company) user = CustomUser.objects.create(
email=email_to_invite,
username=email_to_invite,
company=request.user.company,
)
# send an email # send an email
send_invite_email(user.slug, email_to_invite) send_invite_email(user.slug, email_to_invite)
return Response(status=status.HTTP_201_CREATED) return Response(status=status.HTTP_201_CREATED)
class SetUserPassword(APIView): @csrf_exempt
http_method_names = ['post','get'] def reset_password(request):
if request.method == "POST":
data = json.loads(request.body)
token = data.get('recaptchaToken')
payload = {
'secret': settings.CAPTCHA_SECRET_KEY,
'response': token,
}
response = requests.post('https://www.google.com/recaptcha/api/siteverify', data=payload)
result = response.json()
if result.get('success') and result.get('score') >= 0.5:
email = data.get('email')
user = CustomUser.objects.filter(email=email).first()
if user:
user.set_unusable_password()
user.save()
# send the email
send_password_reset_email(user.slug, email)
JsonResponse(status=200)
JsonResponse(status=400)
class ResetUserPassword(APIView):
http_method_names = [
"post",
]
permission_classes = (permissions.AllowAny,) permission_classes = (permissions.AllowAny,)
authentication_classes = () authentication_classes = ()
def post(self, request, format="json"):
"""
Send an email with a set password link to the set password page
Also disable the account
"""
print(f"Password reset for requests. {request.data}")
token = request.data.get('recaptchaToken')
payload = {
'secret': settings.CAPTCHA_SECRET_KEY,
'response': recaptchaToken,
}
response = requests.post('https://www.google.com/recaptcha/api/siteverify', data=payload)
result = response.json()
if result.get('success') and result.get('score') >= 0.5:
user = CustomUser.objects.filter(email=email).first()
if user:
user.set_unusable_password()
user.save()
# send the email
send_password_reset_email(user.slug, email)
else:
print('Captcha secret failed')
return Response(status=status.HTTP_200_OK)
class SetUserPassword(APIView):
http_method_names = ["post", "get"]
permission_classes = (permissions.AllowAny,)
authentication_classes = ()
def get(self, request, slug): def get(self, request, slug):
user = CustomUser.objects.get(slug=slug) user = CustomUser.objects.get(slug=slug)
if user.last_login: if user.has_usable_password():
return Response(status=status.HTTP_401_UNAUTHORIZED) return Response(status=status.HTTP_401_UNAUTHORIZED)
else: else:
return Response(status=status.HTTP_200_OK) return Response(status=status.HTTP_200_OK)
def post(self, request, slug, format="json"): def post(self, request, slug, format="json"):
user = CustomUser.objects.get(slug=slug) user = CustomUser.objects.get(slug=slug)
user.set_password(request.data['password']) user.set_password(request.data["password"])
user.save() user.save()
return Response(status=status.HTTP_200_OK) return Response(status=status.HTTP_200_OK)
class CustomUserGet(APIView): class CustomUserGet(APIView):
http_method_names = ['get', 'head', 'post'] http_method_names = ["get", "head", "post"]
def get(self, request, format="json"): def get(self, request, format="json"):
email = request.user.email email = request.user.email
@@ -154,8 +266,10 @@ class CustomUserGet(APIView):
return Response(serializer.data, status=status.HTTP_200_OK) return Response(serializer.data, status=status.HTTP_200_OK)
class FeedbackView(APIView): class FeedbackView(APIView):
http_method_names = ['post','get'] http_method_names = ["post", "get"]
def post(self, request, format="json"): def post(self, request, format="json"):
serializer = FeedbackSerializer(data=request.data) serializer = FeedbackSerializer(data=request.data)
print(request.data) print(request.data)
@@ -177,14 +291,15 @@ class FeedbackView(APIView):
return Response(serializer.data, status=status.HTTP_200_OK) return Response(serializer.data, status=status.HTTP_200_OK)
class AcknowledgeTermsOfService(APIView): class AcknowledgeTermsOfService(APIView):
http_method_names = ['post'] http_method_names = ["post"]
def post(self, request, format="json"): def post(self, request, format="json"):
request.user.has_signed_tos = True request.user.has_signed_tos = True
request.user.save() request.user.save()
return Response(status=status.HTTP_200_OK) return Response(status=status.HTTP_200_OK)
class CompanyUsersView(APIView): class CompanyUsersView(APIView):
def get(self, request, format="json"): def get(self, request, format="json"):
# TODO: make sure you are a manager of that company # TODO: make sure you are a manager of that company
@@ -195,7 +310,6 @@ class CompanyUsersView(APIView):
else: else:
return Response(status=status.HTTP_401_UNAUTHORIZED) return Response(status=status.HTTP_401_UNAUTHORIZED)
def post(self, request, format="json"): def post(self, request, format="json"):
if request.user.is_company_manager: if request.user.is_company_manager:
user = CustomUser.objects.get(email=request.data.get("email")) user = CustomUser.objects.get(email=request.data.get("email"))
@@ -224,6 +338,7 @@ class CompanyUsersView(APIView):
return Response(status=status.HTTP_200_OK) return Response(status=status.HTTP_200_OK)
return Response(status=status.HTTP_401_UNAUTHORIZED) return Response(status=status.HTTP_401_UNAUTHORIZED)
class AnnouncmentView(APIView): class AnnouncmentView(APIView):
permission_classes = (permissions.AllowAny,) permission_classes = (permissions.AllowAny,)
serializer_class = AnnouncmentSerializer serializer_class = AnnouncmentSerializer
@@ -259,7 +374,9 @@ def is_authenticated(request):
class ConversationsView(APIView): class ConversationsView(APIView):
def get(self, request, format="json"): def get(self, request, format="json"):
order = "created" if request.user.conversation_order else "-created" order = "created" if request.user.conversation_order else "-created"
conversations = Conversation.objects.filter(user=request.user, deleted=False).order_by(order) conversations = Conversation.objects.filter(
user=request.user, deleted=False
).order_by(order)
serializer = ConversationSerializer(conversations, many=True) serializer = ConversationSerializer(conversations, many=True)
return Response(serializer.data, status=status.HTTP_200_OK) return Response(serializer.data, status=status.HTTP_200_OK)
@@ -283,7 +400,9 @@ class ConversationsView(APIView):
# conversation.user_id = request.user.id # conversation.user_id = request.user.id
# conversation.save() # conversation.save()
return Response({"title": title, "id": conversation.id}, status=status.HTTP_201_CREATED) return Response(
{"title": title, "id": conversation.id}, status=status.HTTP_201_CREATED
)
class ConversationPreferences(APIView): class ConversationPreferences(APIView):
@@ -298,7 +417,6 @@ class ConversationPreferences(APIView):
return Response({"order": user.conversation_order}, status=status.HTTP_200_OK) return Response({"order": user.conversation_order}, status=status.HTTP_200_OK)
class ConversationDetailView(APIView): class ConversationDetailView(APIView):
def get(self, request, format="json"): def get(self, request, format="json"):
conversation_id = request.query_params.get("conversation_id") conversation_id = request.query_params.get("conversation_id")
@@ -306,9 +424,8 @@ class ConversationDetailView(APIView):
serailzer = PromptSerializer(prompts, many=True) serailzer = PromptSerializer(prompts, many=True)
return Response(serailzer.data, status=status.HTTP_200_OK) return Response(serailzer.data, status=status.HTTP_200_OK)
def post(self, request, format="json"): def post(self, request, format="json"):
print('In the post') print("In the post")
# Add the prompt to the database # Add the prompt to the database
# make sure there is a conversation for it # make sure there is a conversation for it
# if there is not a conversation create a title for it # if there is not a conversation create a title for it
@@ -336,27 +453,29 @@ class ConversationDetailView(APIView):
prompt_instance = serializer.save() prompt_instance = serializer.save()
# set up the streaming response if it is from the user # set up the streaming response if it is from the user
print(f'Do we have a valid user? {is_user}') print(f"Do we have a valid user? {is_user}")
if is_user: if is_user:
messages = [] messages = []
for prompt_obj in Prompt.objects.filter(conversation__id=conversation_id): for prompt_obj in Prompt.objects.filter(
messages.append({ conversation__id=conversation_id
'content':prompt_obj.message, ):
'role': 'user' if prompt_obj.user_created else 'assistant' messages.append(
}) {
"content": prompt_obj.message,
channel_layer = get_channel_layer() "role": "user" if prompt_obj.user_created else "assistant",
print(f'Sending to the channel: {CHANNEL_NAME}')
async_to_sync(channel_layer.group_send)(
CHANNEL_NAME, {
'type':'receive',
'content': messages
} }
) )
except:
print(f"Error trying to submit to conversation_id: {conversation_id} with request.data: {request.data}")
pass
channel_layer = get_channel_layer()
print(f"Sending to the channel: {CHANNEL_NAME}")
async_to_sync(channel_layer.group_send)(
CHANNEL_NAME, {"type": "receive", "content": messages}
)
except:
print(
f"Error trying to submit to conversation_id: {conversation_id} with request.data: {request.data}"
)
pass
return Response(status=status.HTTP_200_OK) return Response(status=status.HTTP_200_OK)
@@ -367,13 +486,16 @@ class ConversationDetailView(APIView):
conversation.save() conversation.save()
return Response(status=status.HTTP_202_ACCEPTED) return Response(status=status.HTTP_202_ACCEPTED)
class UserPromptAnalytics(APIView): class UserPromptAnalytics(APIView):
def get(self, request, format="json"): def get(self, request, format="json"):
now = timezone.now() now = timezone.now()
result = [] result = []
number_of_months = 3 number_of_months = 3
company_user_ids = CustomUser.objects.filter(company=request.user.company).values_list('id', flat=True) company_user_ids = CustomUser.objects.filter(
company=request.user.company
).values_list("id", flat=True)
for i in range(number_of_months): for i in range(number_of_months):
next_year = now.year next_year = now.year
next_month = now.month - i next_month = now.month - i
@@ -383,30 +505,51 @@ class UserPromptAnalytics(APIView):
start_date = datetime.datetime(next_year, next_month, 1) start_date = datetime.datetime(next_year, next_month, 1)
end_date = last_day_of_month(start_date) end_date = last_day_of_month(start_date)
total_conversations = Conversation.objects.filter(created__gte=start_date, created__lte=end_date) total_conversations = Conversation.objects.filter(
total_prompts = Prompt.objects.filter(conversation__id__in=total_conversations, created__gte=start_date, created__lte=end_date) created__gte=start_date, created__lte=end_date
)
total_prompts = Prompt.objects.filter(
conversation__id__in=total_conversations,
created__gte=start_date,
created__lte=end_date,
)
total_users = len(CustomUser.objects.all()) total_users = len(CustomUser.objects.all())
my_conversations = Conversation.objects.filter(user=request.user) my_conversations = Conversation.objects.filter(user=request.user)
my_prompts = Prompt.objects.filter(conversation__in=my_conversations, created__gte=start_date, created__lte=end_date) my_prompts = Prompt.objects.filter(
company_conversations = Conversation.objects.filter(user__id__in=company_user_ids) conversation__in=my_conversations,
company_prompts = Prompt.objects.filter(conversation__in=company_conversations, created__gte=start_date, created__lte=end_date) created__gte=start_date,
created__lte=end_date,
)
company_conversations = Conversation.objects.filter(
user__id__in=company_user_ids
)
company_prompts = Prompt.objects.filter(
conversation__in=company_conversations,
created__gte=start_date,
created__lte=end_date,
)
result.append({ result.append(
{
"month": start_date.strftime("%B"), "month": start_date.strftime("%B"),
"you": len(my_prompts), "you": len(my_prompts),
"others": len(company_prompts) / len(company_user_ids), "others": len(company_prompts) / len(company_user_ids),
"all":len(total_prompts)/total_users "all": len(total_prompts) / total_users,
}) }
)
return Response(result[::-1], status=status.HTTP_200_OK) return Response(result[::-1], status=status.HTTP_200_OK)
class UserConversationAnalytics(APIView): class UserConversationAnalytics(APIView):
def get(self, request, format="json"): def get(self, request, format="json"):
now = timezone.now() now = timezone.now()
result = [] result = []
number_of_months = 3 number_of_months = 3
company_user_ids = CustomUser.objects.filter(company=request.user.company).values_list('id', flat=True) company_user_ids = CustomUser.objects.filter(
company=request.user.company
).values_list("id", flat=True)
for i in range(number_of_months): for i in range(number_of_months):
next_year = now.year next_year = now.year
next_month = now.month - i next_month = now.month - i
@@ -416,27 +559,47 @@ class UserConversationAnalytics(APIView):
start_date = datetime.datetime(next_year, next_month, 1) start_date = datetime.datetime(next_year, next_month, 1)
end_date = last_day_of_month(start_date) end_date = last_day_of_month(start_date)
total_conversations = len(Conversation.objects.filter(created__gte=start_date, created__lte=end_date)) total_conversations = len(
Conversation.objects.filter(
created__gte=start_date, created__lte=end_date
)
)
total_users = len(CustomUser.objects.all()) total_users = len(CustomUser.objects.all())
company_conversations = len(Conversation.objects.filter(user__id__in=company_user_ids, created__gte=start_date, created__lte=end_date)) company_conversations = len(
Conversation.objects.filter(
user__id__in=company_user_ids,
created__gte=start_date,
created__lte=end_date,
)
)
result.append({ result.append(
{
"month": start_date.strftime("%B"), "month": start_date.strftime("%B"),
"you": len(Conversation.objects.filter(user=request.user, created__gte=start_date, created__lte=end_date)), "you": len(
Conversation.objects.filter(
user=request.user,
created__gte=start_date,
created__lte=end_date,
)
),
"others": company_conversations / len(company_user_ids), "others": company_conversations / len(company_user_ids),
"all":total_conversations/total_users "all": total_conversations / total_users,
}) }
)
return Response(result[::-1], status=status.HTTP_200_OK) return Response(result[::-1], status=status.HTTP_200_OK)
class CompanyUsageAnalytics(APIView): class CompanyUsageAnalytics(APIView):
def get(self, request, format="json"): def get(self, request, format="json"):
now = timezone.now() now = timezone.now()
result = [] result = []
number_of_months = 3 number_of_months = 3
company_user_ids = CustomUser.objects.filter(company=request.user.company).values_list('id', flat=True) company_user_ids = CustomUser.objects.filter(
company=request.user.company
).values_list("id", flat=True)
for i in range(number_of_months): for i in range(number_of_months):
next_year = now.year next_year = now.year
@@ -447,16 +610,25 @@ class CompanyUsageAnalytics(APIView):
start_date = datetime.datetime(next_year, next_month, 1) start_date = datetime.datetime(next_year, next_month, 1)
end_date = last_day_of_month(start_date) end_date = last_day_of_month(start_date)
conversations = Conversation.objects.filter(user__id__in=company_user_ids, created__gte=start_date, created__lte=end_date) conversations = Conversation.objects.filter(
user__id__in=company_user_ids,
created__gte=start_date,
created__lte=end_date,
)
conversation_user_ids = conversations.values_list("user__id", flat=True).distinct() conversation_user_ids = conversations.values_list(
result.append({ "user__id", flat=True
).distinct()
result.append(
{
"month": start_date.strftime("%B"), "month": start_date.strftime("%B"),
"used": len(conversation_user_ids), "used": len(conversation_user_ids),
"not_used":len(company_user_ids) - len(conversation_user_ids) "not_used": len(company_user_ids) - len(conversation_user_ids),
}) }
)
return Response(result[::-1], status=status.HTTP_200_OK) return Response(result[::-1], status=status.HTTP_200_OK)
class AdminAnalytics(APIView): class AdminAnalytics(APIView):
def get(self, request, format="json"): def get(self, request, format="json"):
number_of_months = 3 number_of_months = 3
@@ -472,14 +644,21 @@ class AdminAnalytics(APIView):
start_date = datetime.datetime(next_year, next_month, 1) start_date = datetime.datetime(next_year, next_month, 1)
end_date = last_day_of_month(start_date) end_date = last_day_of_month(start_date)
durations = [item.get_duration() for item in PromptMetric.objects.filter(created__gte=start_date, created__lte=end_date)] durations = [
item.get_duration()
for item in PromptMetric.objects.filter(
created__gte=start_date, created__lte=end_date
)
]
if len(durations) == 0: if len(durations) == 0:
result.append({ result.append(
{
"month": start_date.strftime("%B"), "month": start_date.strftime("%B"),
"range": [0, 0], "range": [0, 0],
"avg": 0, "avg": 0,
"median": 0, "median": 0,
}) }
)
continue continue
average = sum(durations) / len(durations) average = sum(durations) / len(durations)
@@ -487,22 +666,21 @@ class AdminAnalytics(APIView):
max_value = max(durations) max_value = max(durations)
durations.sort() durations.sort()
median = durations[len(durations) // 2] median = durations[len(durations) // 2]
result.append({ result.append(
{
"month": start_date.strftime("%B"), "month": start_date.strftime("%B"),
"range": [min_value, max_value], "range": [min_value, max_value],
"avg": average, "avg": average,
"median": median, "median": median,
}) }
)
return Response(result[::-1], status=status.HTTP_200_OK) return Response(result[::-1], status=status.HTTP_200_OK)
prompt = ChatPromptTemplate.from_messages([
("system", "You are a helpful assistant."), prompt = ChatPromptTemplate.from_messages(
("user", "{input}") [("system", "You are a helpful assistant."), ("user", "{input}")]
]) )
llm = OllamaLLM(model=MODEL_NAME) llm = OllamaLLM(model=MODEL_NAME)
@@ -510,18 +688,10 @@ llm = OllamaLLM(model=MODEL_NAME)
# # Chain # # Chain
# chain = prompt | llm.with_config({"run_name": "model"}) | output_parser.with_config({"run_name": "Assistant"}) # chain = prompt | llm.with_config({"run_name": "model"}) | output_parser.with_config({"run_name": "Assistant"})
@database_sync_to_async @database_sync_to_async
def create_conversation(prompt, email): def create_conversation(prompt, email, title):
# return the conversation id # return the conversation id
response = llm.invoke("Summarise the phrase in one to for words\"%s\"" % prompt)
print(f"Response: {response}")
print(dir(response))
title = response.replace("\"","")
title = " ".join(title.split(" ")[:4])
conversation = Conversation.objects.create(title=title) conversation = Conversation.objects.create(title=title)
conversation.save() conversation.save()
@@ -530,6 +700,12 @@ def create_conversation(prompt, email):
conversation.save() conversation.save()
return conversation.id return conversation.id
@database_sync_to_async
def get_workspace(conversation_id):
conversation = Conversation.objects.get(id=conversation_id)
return DocumentWorkspace.objects.get(company=conversation.user.company)
@database_sync_to_async @database_sync_to_async
def get_messages(conversation_id, prompt, file_string: str = None, file_type: str = ""): def get_messages(conversation_id, prompt, file_string: str = None, file_type: str = ""):
messages = [] messages = []
@@ -542,7 +718,7 @@ def get_messages(conversation_id, prompt, file_string: str = None, file_type: st
data={ data={
"message": prompt, "message": prompt,
"user_created": True, "user_created": True,
"created": datetime.now(), "created": timezone.now(),
} }
) )
if serializer.is_valid(raise_exception=True): if serializer.is_valid(raise_exception=True):
@@ -556,36 +732,40 @@ def get_messages(conversation_id, prompt, file_string: str = None, file_type: st
prompt_instance.file_type = file_type prompt_instance.file_type = file_type
prompt_instance.save() prompt_instance.save()
for prompt_obj in Prompt.objects.filter(conversation__id=conversation_id): for prompt_obj in Prompt.objects.filter(conversation__id=conversation_id):
messages.append({ messages.append(
'content': prompt_obj.message, {
'role': 'user' if prompt_obj.user_created else 'assistant', "content": prompt_obj.message,
'has_file': prompt_obj.file_exists(), "role": "user" if prompt_obj.user_created else "assistant",
'file': prompt_obj.file if prompt_obj.file_exists() else None, "has_file": prompt_obj.file_exists(),
'file_type': prompt_obj.file_type if prompt_obj.file_exists() else None, "file": prompt_obj.file if prompt_obj.file_exists() else None,
}) "file_type": prompt_obj.file_type if prompt_obj.file_exists() else None,
}
)
# now transform the messages # now transform the messages
transformed_messages = [] transformed_messages = []
for message in messages: for message in messages:
if message['has_file'] and message['file_type'] != None: if message["has_file"] and message["file_type"] != None:
if 'csv' in message['file_type']: if "csv" in message["file_type"]:
file_type = 'csv' file_type = "csv"
altered_message = f"{message['content']}\n The file type is csv and the file contents are: {message['file'].read()}" altered_message = f"{message['content']}\n The file type is csv and the file contents are: {message['file'].read()}"
elif 'xlsx' in message['file_type']: elif "xlsx" in message["file_type"]:
file_type = 'xlsx' file_type = "xlsx"
df = pd.read_excel(message['file'].read()) df = pd.read_excel(message["file"].read())
altered_message = f"{message['content']}\n The file type is xlsx and the file contents are: {df}" altered_message = f"{message['content']}\n The file type is xlsx and the file contents are: {df}"
elif 'txt' in message['file_type']: elif "txt" in message["file_type"]:
file_type = 'txt' file_type = "txt"
altered_message = f"{message['content']}\n The file type is csv and the file contents are: {message['file'].read()}" altered_message = f"{message['content']}\n The file type is csv and the file contents are: {message['file'].read()}"
else: else:
altered_message = message['content'] altered_message = message["content"]
transformed_message = SystemMessage(content=altered_message) if message['role'] == 'assistant' else HumanMessage(content=altered_message) transformed_message = (
SystemMessage(content=altered_message)
if message["role"] == "assistant"
else HumanMessage(content=altered_message)
)
transformed_messages.append(transformed_message) transformed_messages.append(transformed_message)
return transformed_messages, prompt_instance return transformed_messages, prompt_instance
@@ -600,7 +780,7 @@ def save_generated_message(conversation_id, message):
data={ data={
"message": message, "message": message,
"user_created": False, "user_created": False,
"created": datetime.now(), "created": timezone.now(),
} }
) )
if serializer.is_valid(): if serializer.is_valid():
@@ -608,8 +788,11 @@ def save_generated_message(conversation_id, message):
prompt_instance.conversation_id = conversation.id prompt_instance.conversation_id = conversation.id
prompt_instance = serializer.save() prompt_instance = serializer.save()
@database_sync_to_async @database_sync_to_async
def create_prompt_metric(prompt_id, prompt, has_file, file_type, model_name, conversation_id): def create_prompt_metric(
prompt_id, prompt, has_file, file_type, model_name, conversation_id
):
prompt_metric = PromptMetric.objects.create( prompt_metric = PromptMetric.objects.create(
prompt_id=prompt_id, prompt_id=prompt_id,
start_time=timezone.now(), start_time=timezone.now(),
@@ -622,20 +805,35 @@ def create_prompt_metric(prompt_id, prompt, has_file, file_type, model_name, con
prompt_metric.save() prompt_metric.save()
return prompt_metric return prompt_metric
@database_sync_to_async @database_sync_to_async
def update_prompt_metric(prompt_metric, status): def update_prompt_metric(prompt_metric, status):
prompt_metric.event = status prompt_metric.event = status
prompt_metric.save() prompt_metric.save()
@database_sync_to_async @database_sync_to_async
def finish_prompt_metric(prompt_metric, response_length): def finish_prompt_metric(prompt_metric, response_length):
print(f'finish_prompt_metric: {response_length}') print(f"finish_prompt_metric: {response_length}")
prompt_metric.end_time = timezone.now() prompt_metric.end_time = timezone.now()
prompt_metric.reponse_length = response_length prompt_metric.reponse_length = response_length
prompt_metric.event = 'FINISHED' prompt_metric.event = "FINISHED"
prompt_metric.save(update_fields=["end_time", "reponse_length", "event"]) prompt_metric.save(update_fields=["end_time", "reponse_length", "event"])
print("finish_prompt_metric saved") print("finish_prompt_metric saved")
@database_sync_to_async
def get_retriever(conversation_id):
print(f'getting workspace from conversation: {conversation_id}')
conversation = Conversation.objects.get(id=conversation_id)
print(f'Got conversation: {conversation}')
workspace = DocumentWorkspace.objects.get(company=conversation.user.company)
print(f'Got workspace: {conversation}')
vectorstore = Chroma(
persist_directory=f"./chroma_db/",
embedding=OllamaEmbeddings(model="llama3.2"),
)
return vectorstore.as_retriever()
class ChatConsumerAgain(AsyncWebsocketConsumer): class ChatConsumerAgain(AsyncWebsocketConsumer):
async def connect(self): async def connect(self):
await self.accept() await self.accept()
@@ -648,16 +846,18 @@ class ChatConsumerAgain(AsyncWebsocketConsumer):
print(f"Bytes Data: {bytes_data}") print(f"Bytes Data: {bytes_data}")
if text_data: if text_data:
data = json.loads(text_data) data = json.loads(text_data)
message = data.get('message',None) message = data.get("message", None)
conversation_id = data.get('conversation_id',None) conversation_id = data.get("conversation_id", None)
email = data.get("email", None) email = data.get("email", None)
file = data.get("file", None) file = data.get("file", None)
file_type = data.get("fileType", "") file_type = data.get("fileType", "")
model = data.get("modelName", "Turbo")
if not conversation_id: if not conversation_id:
# we need to create a new conversation # we need to create a new conversation
# we will generate a name for it too # we will generate a name for it too
conversation_id = await create_conversation(message, email) title = await title_generator.generate_async(message)
conversation_id = await create_conversation(message, email, title)
if conversation_id: if conversation_id:
decoded_file = None decoded_file = None
@@ -665,30 +865,55 @@ class ChatConsumerAgain(AsyncWebsocketConsumer):
if file: if file:
decoded_file = base64.b64decode(file) decoded_file = base64.b64decode(file)
print(decoded_file) print(decoded_file)
if 'csv' in file_type: if "csv" in file_type:
file_type = 'csv' file_type = "csv"
altered_message = f"{message}\n The file type is csv and the file contents are: {decoded_file}" altered_message = f"{message}\n The file type is csv and the file contents are: {decoded_file}"
elif 'xmlformats-officedocument' in file_type: elif "xmlformats-officedocument" in file_type:
file_type = 'xlsx' file_type = "xlsx"
df = pd.read_excel(decoded_file) df = pd.read_excel(decoded_file)
altered_message = f"{message}\n The file type is xlsx and the file contents are: {df}" altered_message = f"{message}\n The file type is xlsx and the file contents are: {df}"
elif 'text' in file_type: elif "text" in file_type:
file_type = 'txt' file_type = "txt"
altered_message = f"{message}\n The file type is txt and the file contents are: {decoded_file}" altered_message = f"{message}\n The file type is txt and the file contents are: {decoded_file}"
else: else:
file_type = 'Not Sure' file_type = "Not Sure"
print(f'received: "{message}" for conversation {conversation_id}') print(f'received: "{message}" for conversation {conversation_id}')
# check the moderation here
if await moderation_classifier.classify_async(message) == ModerationLabel.NSFW:
response = "Prompt has been marked as NSFW. If this is in error, submit a feedback with the prompt text."
print("this prompt has been marked as NSFW")
await self.send("CONVERSATION_ID")
await self.send(str(conversation_id))
await self.send("START_OF_THE_STREAM_ENDER_GAME_42")
await self.send(response)
await self.send("END_OF_THE_STREAM_ENDER_GAME_42")
await save_generated_message(conversation_id, response)
return
# TODO: add the message to the database # TODO: add the message to the database
# get the new conversation # get the new conversation
# TODO: get the messages here # TODO: get the messages here
messages, prompt = await get_messages(conversation_id, message, decoded_file, file_type) messages, prompt = await get_messages(
conversation_id, message, decoded_file, file_type
)
prompt_metric = await create_prompt_metric(prompt.id, prompt.message, True if file else False, file_type, MODEL_NAME, conversation_id) prompt_type = await prompt_classifier.classify_async(message)
print(f"prompt_type: {prompt_type} for {message}")
prompt_metric = await create_prompt_metric(
prompt.id,
prompt.message,
True if file else False,
file_type,
MODEL_NAME,
conversation_id,
)
if file: if file:
# udpate with the altered_message # udpate with the altered_message
messages = messages[:-1] + [HumanMessage(content=altered_message)] messages = messages[:-1] + [HumanMessage(content=altered_message)]
@@ -698,17 +923,117 @@ class ChatConsumerAgain(AsyncWebsocketConsumer):
# stream the response back # stream the response back
response = "" response = ""
# start of the message # start of the message
await self.send('CONVERSATION_ID') await self.send("CONVERSATION_ID")
await self.send(str(conversation_id)) await self.send(str(conversation_id))
await self.send('START_OF_THE_STREAM_ENDER_GAME_42') await self.send("START_OF_THE_STREAM_ENDER_GAME_42")
async for chunk in llm.astream(messages): if prompt_type == PromptType.RAG:
service = AsyncRAGService()
#await service.ingest_documents()
workspace = await get_workspace(conversation_id)
print('Time to get the rag response')
async for chunk in service.generate_response(messages, prompt.message, workspace):
print(f"chunk: {chunk}") print(f"chunk: {chunk}")
response += chunk response += chunk
await self.send(chunk) await self.send(chunk)
await self.send('END_OF_THE_STREAM_ENDER_GAME_42') elif prompt_type == PromptType.IMAGE_GENERATION:
response = "Image Generation is not supported at this time, but it will be soon."
await self.send(response)
else:
service = AsyncLLMService()
async for chunk in service.generate_response(messages, prompt.message):
print(f"chunk: {chunk}")
response += chunk
await self.send(chunk)
await self.send("END_OF_THE_STREAM_ENDER_GAME_42")
await save_generated_message(conversation_id, response) await save_generated_message(conversation_id, response)
await finish_prompt_metric(prompt_metric, len(response)) await finish_prompt_metric(prompt_metric, len(response))
if bytes_data: if bytes_data:
print("we have byte data") print("we have byte data")
# Document Views
class DocumentWorkspaceView(APIView):
#permission_classes = [permissions.IsAuthenticated]
def get(self, request):
workspaces = DocumentWorkspace.objects.filter(company=request.user.company)
serializer = DocumentWorkspaceSerializer(workspaces, many=True)
return Response(serializer.data)
def post(self, request):
serializer = DocumentWorkspaceSerializer(data=request.data)
if serializer.is_valid():
serializer.save(company=request.user.company)
return Response(serializer.data, status=status.HTTP_201_CREATED)
return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)
class DocumentUploadView(APIView):
#permission_classes = [permissions.IsAuthenticated]Z
def get(self, request):
print(f'request_3: {request}')
try:
workspace = DocumentWorkspace.objects.get(company=request.user.company)
serializer = DocumentSerializer(Document.objects.filter(workspace=workspace), many=True)
return Response(serializer.data, status=status.HTTP_200_OK)
except:
return Response({'error': "Workspace not found"}, status=status.HTTP_404_NOT_FOUND)
def post(self, request):
print(f'request: {request}')
try:
workspace = DocumentWorkspace.objects.get(company=request.user.company)
except:
return Response({'error': "Workspace not found"}, status=status.HTTP_404_NOT_FOUND)
print(request.FILES)
file = request.FILES.get('file')
if not file:
return Response({"error":"No file provided"}, status=status.HTTP_400_BAD_REQUEST)
print("have the workspace and the file")
document = Document.objects.create(
workspace=workspace,
file=file
)
# process the document inthe background
self.process_document(document)
serializer = DocumentSerializer(document)
return Response(serializer.data, status=status.HTTP_201_CREATED)
def process_document(self, document):
file_path = os.path.join(settings.MEDIA_ROOT, document.file.name)
document.processed = True
document.active = True
document.save()
service = AsyncRAGService()
service.add_files_to_store([(file_path, document.file.name, document.workspace_id)], workspace_id=document.workspace_id)
class DocumentDetailView(APIView):
#permission_classes = [permissions.IsAuthenticated]
def get(self, request, document_id):
print(f'request: {request}')
try:
workspace = DocumentWorkspace.objects.get(company=request.user.company)
document = Document.objects.get(
workspace=workspace,
id=document_id
)
except:
return Response({'error': "Document not found"}, status=status.HTTP_404_NOT_FOUND)
serializer = DocumentWorkspaceSerializer(workspaces, many=True)
return Response(serializer.data)

View File

@@ -13,13 +13,14 @@ from django.core.asgi import get_asgi_application
from channels.routing import ProtocolTypeRouter, URLRouter from channels.routing import ProtocolTypeRouter, URLRouter
from channels.auth import AuthMiddlewareStack from channels.auth import AuthMiddlewareStack
import chat_backend.routing import chat_backend.routing
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'llm_be.settings')
application = ProtocolTypeRouter({ os.environ.setdefault("DJANGO_SETTINGS_MODULE", "llm_be.settings")
application = ProtocolTypeRouter(
{
"http": get_asgi_application(), "http": get_asgi_application(),
"websocket": AuthMiddlewareStack( "websocket": AuthMiddlewareStack(
URLRouter( URLRouter(chat_backend.routing.websocket_urlpatterns)
chat_backend.routing.websocket_urlpatterns
)
), ),
}) }
)

View File

@@ -22,80 +22,86 @@ BASE_DIR = Path(__file__).resolve().parent.parent
# See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/
# SECURITY WARNING: keep the secret key used in production secret! # SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = 'django-insecure-6suk6fj5q2)1tj%)f(wgw1smnliv5-#&@zvgvj1wp#(#@h#31x' SECRET_KEY = "django-insecure-6suk6fj5q2)1tj%)f(wgw1smnliv5-#&@zvgvj1wp#(#@h#31x"
# SECURITY WARNING: don't run with debug turned on in production! # SECURITY WARNING: don't run with debug turned on in production!
DEBUG = True DEBUG = True
CORS_ALLOW_CREDENTIALS = False
ALLOWED_HOSTS = ['*.aimloperations.com','localhost','127.0.0.1','chat.aimloperations.com','chatbackend.aimloperations.com'] ALLOWED_HOSTS = [
"*.aimloperations.com",
"localhost",
"127.0.0.1",
"localhost:3000",
"127.0.0.1:3000",
"chat.aimloperations.com",
"chatbackend.aimloperations.com",
]
CORS_ORIGIN_ALLOW_ALL = True CORS_ORIGIN_ALLOW_ALL = True
CSRF_TRUSTED_ORIGINS = ["http://localhost", "http://127.0.0.1", "http://localhost:3000"]
# Application definition # Application definition
INSTALLED_APPS = [ INSTALLED_APPS = [
'daphne', "daphne",
'django.contrib.admin', "django.contrib.admin",
'django.contrib.auth', "django.contrib.auth",
'django.contrib.contenttypes', "django.contrib.contenttypes",
'django.contrib.sessions', "django.contrib.sessions",
'django.contrib.messages', "django.contrib.messages",
'django.contrib.staticfiles', "django.contrib.staticfiles",
'chat_backend', "chat_backend",
'rest_framework', "rest_framework",
'corsheaders', "corsheaders",
'rest_framework_simplejwt.token_blacklist', "rest_framework_simplejwt.token_blacklist",
] ]
MIDDLEWARE = [ MIDDLEWARE = [
'django.middleware.security.SecurityMiddleware', "django.middleware.security.SecurityMiddleware",
'django.contrib.sessions.middleware.SessionMiddleware', "django.contrib.sessions.middleware.SessionMiddleware",
'django.middleware.common.CommonMiddleware', "django.middleware.common.CommonMiddleware",
'django.middleware.csrf.CsrfViewMiddleware', "django.middleware.csrf.CsrfViewMiddleware",
'django.contrib.auth.middleware.AuthenticationMiddleware', "django.contrib.auth.middleware.AuthenticationMiddleware",
'django.contrib.messages.middleware.MessageMiddleware', "django.contrib.messages.middleware.MessageMiddleware",
'django.middleware.clickjacking.XFrameOptionsMiddleware', "django.middleware.clickjacking.XFrameOptionsMiddleware",
"corsheaders.middleware.CorsMiddleware", "corsheaders.middleware.CorsMiddleware",
"django.middleware.common.CommonMiddleware", "django.middleware.common.CommonMiddleware",
] ]
ROOT_URLCONF = 'llm_be.urls' ROOT_URLCONF = "llm_be.urls"
# SETTINGS_PATH = os.path.dirname(os.path.dirname(__file__)) # SETTINGS_PATH = os.path.dirname(os.path.dirname(__file__))
# TEMPLATE_DIRS = ( # TEMPLATE_DIRS = (
# os.path.join(SETTINGS_PATH, 'templates'), # os.path.join(SETTINGS_PATH, 'templates'),
# ) # )
print(os.path.join(BASE_DIR, 'templates'))
TEMPLATES = [ TEMPLATES = [
{ {
'BACKEND': 'django.template.backends.django.DjangoTemplates', "BACKEND": "django.template.backends.django.DjangoTemplates",
'DIRS': [os.path.join(BASE_DIR, 'templates')], "DIRS": [os.path.join(BASE_DIR, "templates")],
'APP_DIRS': True, "APP_DIRS": True,
'OPTIONS': { "OPTIONS": {
'context_processors': [ "context_processors": [
'django.template.context_processors.debug', "django.template.context_processors.debug",
'django.template.context_processors.request', "django.template.context_processors.request",
'django.contrib.auth.context_processors.auth', "django.contrib.auth.context_processors.auth",
'django.contrib.messages.context_processors.messages', "django.contrib.messages.context_processors.messages",
], ],
}, },
}, },
] ]
WSGI_APPLICATION = 'llm_be.wsgi.application' WSGI_APPLICATION = "llm_be.wsgi.application"
ASGI_APPLICATION = 'llm_be.asgi.application' ASGI_APPLICATION = "llm_be.asgi.application"
# Database # Database
# https://docs.djangoproject.com/en/3.2/ref/settings/#databases # https://docs.djangoproject.com/en/3.2/ref/settings/#databases
DATABASES = { DATABASES = {
'default': { "default": {
'ENGINE': 'django.db.backends.sqlite3', "ENGINE": "django.db.backends.sqlite3",
'NAME': BASE_DIR / 'db.sqlite3', "NAME": BASE_DIR / "db.sqlite3",
} }
} }
@@ -105,28 +111,26 @@ DATABASES = {
AUTH_PASSWORD_VALIDATORS = [ AUTH_PASSWORD_VALIDATORS = [
{ {
'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', "NAME": "django.contrib.auth.password_validation.UserAttributeSimilarityValidator",
}, },
{ {
'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', "NAME": "django.contrib.auth.password_validation.MinimumLengthValidator",
}, },
{ {
'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', "NAME": "django.contrib.auth.password_validation.CommonPasswordValidator",
}, },
{ {
'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', "NAME": "django.contrib.auth.password_validation.NumericPasswordValidator",
}, },
] ]
# Internationalization # Internationalization
# https://docs.djangoproject.com/en/3.2/topics/i18n/ # https://docs.djangoproject.com/en/3.2/topics/i18n/
LANGUAGE_CODE = 'en-us' LANGUAGE_CODE = "en-us"
TIME_ZONE = 'UTC' TIME_ZONE = "UTC"
USE_I18N = True USE_I18N = True
@@ -138,39 +142,37 @@ USE_TZ = True
# Static files (CSS, JavaScript, Images) # Static files (CSS, JavaScript, Images)
# https://docs.djangoproject.com/en/3.2/howto/static-files/ # https://docs.djangoproject.com/en/3.2/howto/static-files/
STATIC_URL = '/static/' STATIC_URL = "/static/"
# Default primary key field type # Default primary key field type
# https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field
DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField' DEFAULT_AUTO_FIELD = "django.db.models.BigAutoField"
# custom user model # custom user model
AUTH_USER_MODEL = 'chat_backend.CustomUser' AUTH_USER_MODEL = "chat_backend.CustomUser"
# rest framework jwt stuff # rest framework jwt stuff
REST_FRAMEWORK = { REST_FRAMEWORK = {
'DEFAULT_PERMISSION_CLASSES': ( "DEFAULT_PERMISSION_CLASSES": ("rest_framework.permissions.IsAuthenticated",),
'rest_framework.permissions.IsAuthenticated', "DEFAULT_AUTHENTICATION_CLASSES": (
), "rest_framework_simplejwt.authentication.JWTAuthentication",
'DEFAULT_AUTHENTICATION_CLASSES': (
'rest_framework_simplejwt.authentication.JWTAuthentication',
), # ), #
} }
SIMPLE_JWT = { SIMPLE_JWT = {
'ACCESS_TOKEN_LIFETIME':timedelta(hours=5), "ACCESS_TOKEN_LIFETIME": timedelta(hours=24),
'REFRESH_TOKEN_LIFETIME':timedelta(days=14), "REFRESH_TOKEN_LIFETIME": timedelta(days=14),
'ROTATE_REFRESH_TOKENS':True, "ROTATE_REFRESH_TOKENS": True,
'BLACKLIST_AFTER_ROTATION':True, "BLACKLIST_AFTER_ROTATION": True,
'ALGORITHM':"HS256", "ALGORITHM": "HS256",
"SIGNING_KEY": SECRET_KEY, "SIGNING_KEY": SECRET_KEY,
'VERIFYING_KEY':None, "VERIFYING_KEY": None,
"AUTH_HEADER_TYPES":('JWT',), "AUTH_HEADER_TYPES": ("JWT",),
'USER_ID_FIELD':'id', "USER_ID_FIELD": "id",
'USER_ID_CLAIM':'user_id', "USER_ID_CLAIM": "user_id",
'AUTH_TOKEN_CLASSES':('rest_framework_simplejwt.tokens.AccessToken',), "AUTH_TOKEN_CLASSES": ("rest_framework_simplejwt.tokens.AccessToken",),
'TOKEN_TYPE_CLAIM':'token_type', "TOKEN_TYPE_CLAIM": "token_type",
} }
# CORS settings # CORS settings
@@ -181,8 +183,8 @@ CORS_ALLOWED_ORIGINS = [
# channel settings # channel settings
CHANNEL_LAYERS = { CHANNEL_LAYERS = {
'default': { "default": {
'BACKEND': 'channels.layers.InMemoryChannelLayer', "BACKEND": "channels.layers.InMemoryChannelLayer",
}, },
} }
@@ -198,8 +200,11 @@ CHANNEL_LAYERS = {
# EMAIL_TIMEOUT = os.getenv("APP_EMAIL_TIMEOUT", 60) # EMAIL_TIMEOUT = os.getenv("APP_EMAIL_TIMEOUT", 60)
# SMTP2GO # SMTP2GO
EMAIL_HOST = 'mail.smtp2go.com' EMAIL_HOST = "mail.smtp2go.com"
EMAIL_HOST_USER = 'info.aimloperations.com' EMAIL_HOST_USER = "info.aimloperations.com"
EMAIL_HOST_PASSWORD = 'ZDErIII2sipNNVMz' EMAIL_HOST_PASSWORD = "ZDErIII2sipNNVMz"
EMAIL_PORT = 2525 EMAIL_PORT = 2525
EMAIL_USE_TLS = True EMAIL_USE_TLS = True
# Captcha
CAPTCHA_SECRET_KEY = "6LfENu4qAAAAABdrj6JTviq-LfdPP5imhE-Os7h9"

View File

@@ -13,12 +13,17 @@ Including another URLconf
1. Import the include() function: from django.urls import include, path 1. Import the include() function: from django.urls import include, path
2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) 2. Add a URL to urlpatterns: path('blog/', include('blog.urls'))
""" """
from django.contrib import admin from django.contrib import admin
from django.urls import path, include from django.urls import path, include
from django.conf import settings from django.conf import settings
from django.conf.urls.static import static from django.conf.urls.static import static
urlpatterns = [ urlpatterns = (
path('admin/', admin.site.urls), [
path('api/', include('chat_backend.urls')), path("admin/", admin.site.urls),
] + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) path("api/", include("chat_backend.urls")),
]
+ static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)
+ static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
)

View File

@@ -11,6 +11,6 @@ import os
from django.core.wsgi import get_wsgi_application from django.core.wsgi import get_wsgi_application
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'llm_be.settings') os.environ.setdefault("DJANGO_SETTINGS_MODULE", "llm_be.settings")
application = get_wsgi_application() application = get_wsgi_application()

View File

@@ -6,7 +6,7 @@ import sys
def main(): def main():
"""Run administrative tasks.""" """Run administrative tasks."""
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'llm_be.settings') os.environ.setdefault("DJANGO_SETTINGS_MODULE", "llm_be.settings")
try: try:
from django.core.management import execute_from_command_line from django.core.management import execute_from_command_line
except ImportError as exc: except ImportError as exc:
@@ -18,5 +18,5 @@ def main():
execute_from_command_line(sys.argv) execute_from_command_line(sys.argv)
if __name__ == '__main__': if __name__ == "__main__":
main() main()

View File

@@ -30,16 +30,16 @@ djangorestframework-simplejwt==5.3.1
duckdb==1.1.3 duckdb==1.1.3
et_xmlfile==2.0.0 et_xmlfile==2.0.0
exceptiongroup==1.2.2 exceptiongroup==1.2.2
Faker==33.1.0 Faker
filelock==3.16.1 filelock==3.16.1
fonttools==4.55.3 fonttools==4.55.3
frozenlist==1.5.0 frozenlist==1.5.0
fsspec==2024.12.0 fsspec==2024.12.0
greenlet==3.1.1 greenlet==3.1.1
h11==0.14.0 h11==0.14.0
httpcore==1.0.7 httpcore
httpx==0.27.2 httpx
httpx-sse==0.4.0 httpx-sse
hyperlink==21.0.0 hyperlink==21.0.0
idna==3.10 idna==3.10
importlib_resources==6.4.5 importlib_resources==6.4.5
@@ -48,14 +48,14 @@ Jinja2==3.1.5
jiter==0.8.2 jiter==0.8.2
jsonpatch==1.33 jsonpatch==1.33
jsonpointer==3.0.0 jsonpointer==3.0.0
kiwisolver==1.4.7 kiwisolver
langchain==0.3.13 langchain
langchain-community==0.3.13 langchain-community
langchain-core==0.3.28 langchain-core
langchain-ollama==0.2.2 langchain-ollama
langchain-openai==0.2.14 langchain-openai
langchain-text-splitters==0.3.4 langchain-text-splitters
langsmith==0.2.7 langsmith
lxml==5.3.0 lxml==5.3.0
MarkupSafe==3.0.2 MarkupSafe==3.0.2
marshmallow==3.23.2 marshmallow==3.23.2
@@ -77,14 +77,14 @@ nvidia-cusparse-cu12==12.3.1.170
nvidia-nccl-cu12==2.21.5 nvidia-nccl-cu12==2.21.5
nvidia-nvjitlink-cu12==12.4.127 nvidia-nvjitlink-cu12==12.4.127
nvidia-nvtx-cu12==12.4.127 nvidia-nvtx-cu12==12.4.127
ollama==0.4.5 ollama
ollama-python==0.1.2 ollama-python
openai==1.58.1 openai
openpyxl==3.1.5 openpyxl==3.1.5
orjson==3.10.13 orjson==3.10.13
packaging==24.2 packaging==24.2
pandas==2.2.3 pandas==2.2.3
pandasai==2.4.1 pandasai
pathspec==0.12.1 pathspec==0.12.1
pillow==11.0.0 pillow==11.0.0
platformdirs==4.3.6 platformdirs==4.3.6

208
requirements.txt Normal file
View File

@@ -0,0 +1,208 @@
aiofiles==24.1.0
aiohappyeyeballs==2.6.1
aiohttp==3.11.18
aiosignal==1.3.2
annotated-types==0.7.0
anyio==4.8.0
asgiref==3.8.1
astor==0.8.1
attrs==25.1.0
autobahn==24.4.2
Automat==24.8.1
backoff==2.2.1
bcrypt==4.3.0
beautifulsoup4==4.13.4
black==25.1.0
build==1.2.2.post1
cachetools==5.5.2
certifi==2025.1.31
cffi==1.17.1
channels==4.2.0
chardet==5.2.0
charset-normalizer==3.4.1
chroma-hnswlib==0.7.6
chromadb==1.0.7
click==8.1.8
coloredlogs==15.0.1
constantly==23.10.4
contourpy==1.3.1
cryptography==44.0.2
cycler==0.12.1
daphne==4.1.2
dataclasses-json==0.6.7
Deprecated==1.2.18
distro==1.9.0
Django==5.1.7
django-autoslug==1.9.9
django-cors-headers==4.7.0
django-filter==25.1
djangorestframework==3.15.2
djangorestframework_simplejwt==5.5.0
duckdb==1.2.1
durationpy==0.9
emoji==2.14.1
eval_type_backport==0.2.2
Faker==37.0.0
fastapi==0.115.9
filelock==3.17.0
filetype==1.2.0
flatbuffers==25.2.10
fonttools==4.56.0
frozenlist==1.6.0
fsspec==2025.2.0
google-auth==2.39.0
googleapis-common-protos==1.70.0
greenlet==3.1.1
grpcio==1.71.0
h11==0.14.0
html5lib==1.1
httpcore==1.0.7
httptools==0.6.4
httpx==0.28.1
httpx-sse==0.4.0
huggingface-hub==0.30.2
humanfriendly==10.0
hyperlink==21.0.0
idna==3.10
importlib_metadata==8.6.1
importlib_resources==6.5.2
incremental==24.7.2
Jinja2==3.1.6
jiter==0.8.2
joblib==1.4.2
jsonpatch==1.33
jsonpointer==3.0.0
jsonschema==4.23.0
jsonschema-specifications==2025.4.1
kiwisolver==1.4.8
kubernetes==32.0.1
langchain==0.3.24
langchain-community==0.3.23
langchain-core==0.3.56
langchain-ollama==0.2.3
langchain-text-splitters==0.3.8
langdetect==1.0.9
langsmith==0.3.13
lxml==5.4.0
Markdown==3.7
markdown-it-py==3.0.0
MarkupSafe==3.0.2
marshmallow==3.26.1
matplotlib==3.10.1
mdurl==0.1.2
mmh3==5.1.0
mpmath==1.3.0
multidict==6.4.3
mypy-extensions==1.0.0
nest-asyncio==1.6.0
networkx==3.4.2
nltk==3.9.1
numpy==2.2.3
nvidia-cublas-cu12==12.4.5.8
nvidia-cuda-cupti-cu12==12.4.127
nvidia-cuda-nvrtc-cu12==12.4.127
nvidia-cuda-runtime-cu12==12.4.127
nvidia-cudnn-cu12==9.1.0.70
nvidia-cufft-cu12==11.2.1.3
nvidia-curand-cu12==10.3.5.147
nvidia-cusolver-cu12==11.6.1.9
nvidia-cusparse-cu12==12.3.1.170
nvidia-cusparselt-cu12==0.6.2
nvidia-nccl-cu12==2.21.5
nvidia-nvjitlink-cu12==12.4.127
nvidia-nvtx-cu12==12.4.127
oauthlib==3.2.2
olefile==0.47
ollama==0.4.7
onnxruntime==1.21.1
openai==1.65.4
opentelemetry-api==1.32.1
opentelemetry-exporter-otlp-proto-common==1.32.1
opentelemetry-exporter-otlp-proto-grpc==1.32.1
opentelemetry-instrumentation==0.53b1
opentelemetry-instrumentation-asgi==0.53b1
opentelemetry-instrumentation-fastapi==0.53b1
opentelemetry-proto==1.32.1
opentelemetry-sdk==1.32.1
opentelemetry-semantic-conventions==0.53b1
opentelemetry-util-http==0.53b1
orjson==3.10.15
overrides==7.7.0
packaging==24.2
pandas==2.2.3
pandasai==2.4.2
pathspec==0.12.1
pillow==11.1.0
platformdirs==4.3.6
posthog==4.0.1
propcache==0.3.1
protobuf==5.29.4
psutil==7.0.0
pyasn1==0.6.1
pyasn1_modules==0.4.1
pycparser==2.22
pydantic==2.11.4
pydantic-settings==2.9.1
pydantic_core==2.33.2
Pygments==2.19.1
PyJWT==2.10.1
pyOpenSSL==25.0.0
pyparsing==3.2.1
pypdf==5.4.0
PyPika==0.48.9
pyproject_hooks==1.2.0
python-dateutil==2.9.0.post0
python-dotenv==1.0.1
python-iso639==2025.2.18
python-magic==0.4.27
python-oxmsg==0.0.2
pytz==2025.1
PyYAML==6.0.2
RapidFuzz==3.13.0
referencing==0.36.2
regex==2024.11.6
requests==2.32.3
requests-oauthlib==2.0.0
requests-toolbelt==1.0.0
rich==14.0.0
rpds-py==0.24.0
rsa==4.9.1
scipy==1.15.2
service-identity==24.2.0
setuptools==75.8.2
shellingham==1.5.4
six==1.17.0
sniffio==1.3.1
soupsieve==2.7
SQLAlchemy==2.0.38
sqlglot==26.9.0
sqlglotrs==0.4.0
sqlparse==0.5.3
starlette==0.45.3
sympy==1.13.1
tenacity==9.0.0
tokenizers==0.21.1
torch==2.6.0
tqdm==4.67.1
triton==3.2.0
Twisted==24.11.0
txaio==23.1.1
typer==0.15.3
typing-inspect==0.9.0
typing-inspection==0.4.0
typing_extensions==4.12.2
tzdata==2025.1
unstructured==0.17.2
unstructured-client==0.34.0
urllib3==2.3.0
uvicorn==0.34.2
uvloop==0.21.0
watchfiles==1.0.5
webencodings==0.5.1
websocket-client==1.8.0
websockets==15.0.1
wrapt==1.17.2
yarl==1.20.0
zipp==3.21.0
zope.interface==7.2
zstandard==0.23.0

9
strip_and_upgrade.py Normal file
View File

@@ -0,0 +1,9 @@
outfile = open("requirements.txt",'w')
for line in open('requirements.dev','r'):
line = line.strip()
if line:
values = line.split('==')
print(values[0])
outfile.write(values[0] + '\n')